NOM:	. Prénom:
NOWI	. F15110111

Première S4 M Mangeard	Devoir de mathématiques	Mercredi 30 novembre 2016

- Calculatrice autorisée - Durée : 1h50

- Rendre le sujet et mettre son nom dessus

Exercice 1 (5 points)

Dans un repère orthonormé $(0; \vec{l}, \vec{j})$, on considère les droites suivantes :

(*d*):
$$2x - y + 3 = 0$$

(*d*'): $3x + 2y - 4 = 0$

- 1°) Démontrer que les droites (*d*) et (*d'*) ne sont pas parallèles.
- 2°) Déterminer les coordonnées du *I*, point d'intersection de (*d*) et (*d*').
- 3°) Déterminer une équation cartésienne de la droite (*d*'') parallèle à (*d*) qui passe par A(3; 1).

Exercice 2 (6 points)

Soit ABC un triangle. On se place dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$ M et L sont définis par $\overrightarrow{AM} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{BL} = -\frac{1}{2}\overrightarrow{BC}$ I est le milieu de [AC].

- 1°) Faire une figure et la compléter tout au long de l'exercice.
- 2°) Donner les coordonnées des points A, B, C, I et M
- 3°) Prouver que les coordonnées du point L sont $\left(\frac{3}{2}; -\frac{1}{2}\right)$
- 4°) En déduire que les points I, M et L sont alignés.

Exercice 3 (7 points)

- 1) Soit $f(x) = \sqrt{4x^2 7x + 3}$. On pose $g(x) = 4x^2 7x + 3$
 - a) Déterminer soigneusement l'ensemble de définition de f
 - b) Etudier les variations de g sur IR
 - c) En déduire les variations de f sur $[1;+\infty[$ en détaillant les étapes
 - d) Dresser le tableau de variation de f sur $[1;+\infty[$
- 2) Soit h(x) = |-2x + 5|
 - a) Ecrire h(x) sans les barres de valeur absolue
 - b) En déduire les variations de h sur IR
 - c) Ebaucher une allure pour la courbe de h
 - d) Résoudre algébriquement h(x) = 2. Interpréter graphiquement.

NOM :	Prénom :
Exercice 4	(7 points)

- 1) On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 5n n^2$.
 - a) Calculer les trois premiers termes de cette suite.
 - b) Exprimer u_{n+1} en fonction de n.
 - c) En déduire l'expression u_{n+1} u_n en fonction de n.
- 2) On considère la suite (v_n) définie par son premier terme $v_0 = 5$ et la relation $v_{n+1} = \frac{1}{2}v_n + 2$, pour n entier naturel non nul.
 - a) Calculer v₁ et v₂.
 - b) Exprimer v_{n+2} en fonction de v_n pour tout $n \in \mathbb{N}$

Exercice 5 (3 points)

La vitesse v (en km/h) d'un satellite artificiel tournant autour de la Terre à l'altitude h(en km) est donnée par :

$$v(h) = \frac{2\ 267\ 720}{\sqrt{6\ 370 + h}}$$

- 1) Déterminer le sens de variation de la fonction v en détaillant
- 2) Si l'altitude du satellite est comprise entre 200 km et 300 km, entre quelles valeurs est comprise sa vitesse ? Justifier
- 3) Un satellite géostationnaire se trouve à 35 786 km d'altitude. Combien de temps met-il pour faire un tour complet autour de la Terre ?