Corrigé sur mon site à partir de mardi soir

Exercice 1:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = -12n + 5$

- 1) Calculer u_0, u_1, u_2, u_3
- 2) Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique. On précisera son premier terme et sa raison.
- 3) Calculer $S = u_0 + u_1 + ... + u_n$

Exercice 2:

On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n = 7(1+\sqrt{3})^n$

- 1) Calculer v_0, v_1, v_2, v_3 en valeurs exactes
- 2) Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique. On précisera son premier terme et sa raison.
- 3) Calculer $S = v_0 + v_1 + ... + v_n$

Exercice 3:

Calculer les sommes suivantes en détaillant bien les étapes :

1)
$$S_1 = 1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + ... + \frac{1024}{59049}$$

2)
$$S_2 = 2 - 9 - 20 - 31 \dots - 163$$

Exercice 4:

Soit la suite (u) définie par la relation de récurrence suivante :

$$u_{n+1} = \frac{3}{5} u_n - 1$$
 , pour tout $n \in \mathbb{N}$, avec $u_0 = -2$

- 1) Montrer soigneusement que (u) n'est ni arithmétique, ni géométrique
- 2) On pose, pour tout $n \in \mathbb{N}$, $v_n = u_n + \frac{5}{2}$
 - a) Montrer que (v) est géométrique. On donnera son premier terme et sa raison.
 - b) En déduire l'expression de v_n en fonction de n
 - c) Déterminer l'expression de u_n en fonction de n
- 3) On pose $S_n = v_0 + v_1 + v_2 + ... + v_n$ et $T_n = u_0 + u_1 + u_2 + ... + u_n$
 - a) Exprimer S_n en fonction de n en justifiant
 - b) En déduire l'expression de T_n en fonction de n

Exercice 5:

Soit la suite (u) définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = \frac{3u_n + 4}{u_n + 3} \\ u_0 = -1 \end{cases}$$

- 1) Calculer u_1, u_2, u_3
- 2) Cette suite est-elle arithmétique ? Géométrique ? Le prouver
- 3) Soit (v) la suite définie pour tout $n \in \mathbb{N}$, $v_n = \frac{u_n + 2}{u_n 2}$
 - a) Montrer que (v) est géométrique
 - b) En déduire v_n en fonction de n, puis u_n en fonction de n

Exercice 6:

En 2015, un article coûte 15,50 €. Chaque année, son prix augmente de 1 %. Notons p_n le prix de cet objet à l'année 2015+n

- 1) Déterminer p_0 , p_1 et p_2
- 2) Exprimer p_{n+1} en fonction de p_n . Quelle est la nature de (p_n) ?
- 3) Exprimer p_n en fonction de n. Puis, calculer le prix de cet article en 2030.

Exercice 7:

Victor D, chef d'entreprise, a décidé de verser en 2013 à ses salariés une prime de 500 € pour les fêtes de fin d'année.

Cette prime initiale est notée p_0 .

Tous les ans, cette prime est revalorisée de 12 €.

Notons p_n : la prime obtenue à la fin de l'année 2013 + n.

- 1) Exprimer p_{n+1} en fonction de p_n
- 2) En déduire l'expression de p_n en fonction de n
- 3) Calculer le montant de la prime en 2023
- 4) Quel montant total recevra alors chaque employé de 2013 à 2023 incluse ? Justifier.