Spé Maths Terminale (M Mangeard)

Corrigé du devoir de mathématiques :

Géométrie dans l'espace (2)

Fait le jeudi 6 janvier 2022

Exercice 1:

On considère l'ensemble (E) des points M(x;y;z) de l'espace tels que :

$$x^2 + y^2 + z^2 - 6x + 4y + 2z - 4 = 0$$

Déterminer les éléments caractéristiques de l'ensemble (E) en justifiant.

$$x^{2}+y^{2}+3^{2}-6x+4y+23-4=0$$

$$(=) x^{2}-6x+y^{2}+4y+3^{2}+23-4=0$$

$$(=) (x-3)^{2}-9+(y+2)^{2}+4+(3+1)^{2}-1-4=0$$

$$(=) (x-3)^{2}+(y+2)^{2}+(3+1)^{2}=9+4+1+4=18$$

$$(=) (x-3)^{2}+(y+2)^{2}+(3+1)^{2}=18$$

$$(=) (x-3)^{2}+(y+2)^{2}+3+1=18$$

$$(=) (x-3)^{2}+(y+2)^{2}+3+1=18$$

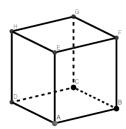
$$(=) (x-3)^{2}+(y+2)^{2}+3+1=18$$

$$(=) (x-3)^{2}+3+1=18$$

$$(=) (x-3)^{2}+3+1=$$

Exercice 2:

Dans le cube ABCDEFGH ci-dessous, on se place dans le repère (A ; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE})



Le point K est le centre du carré DCGH et le point L est défini par : $\overrightarrow{BL} = 4\overrightarrow{BC}$

Déterminer les coordonnées des points K et L dans le repère (A ; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE})

$$\overrightarrow{AK} = \overrightarrow{AD} + \overrightarrow{DK}$$
 (relation de Charles)
 $= \overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC} + \frac{1}{2}\overrightarrow{DH}$, or, $\overrightarrow{DC} = \overrightarrow{AB}$ et $\overrightarrow{DH} = \overrightarrow{AE}$
 $\overrightarrow{Doie}: \overrightarrow{AK} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AE}$
 $\overrightarrow{Done}: K$ a pair coordonners $(\frac{1}{2}; 1; \frac{1}{2})$

Exercice 3:

Soient les quatre points suivants dans un repère orthonormé de l'espace :

1) Montrer que les points A, B et C définissent un plan de l'espace

2) Montrer que le vecteur \vec{n} de coordonnées $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ est un vecteur normal au plan (ABC) AB etAC sont doux vecteurs directeurs du plan (ABC)

$$\overrightarrow{M}$$
. $\overrightarrow{AB} = 1 \times 5 + 1 \times (-1) + (-2) \times 2$
 $= 5 - 1 - 4 = 0$, \overrightarrow{M} and \overrightarrow{M} \overrightarrow{AB} , \overrightarrow{M} estauthogonal \overrightarrow{M} . $\overrightarrow{AC} = 1 \times 3 + 1 \times (-3) + (-2) \times 0$ a deux necteurs \overrightarrow{M} due teurs \overrightarrow{M} $\overrightarrow{M$

Donc: n'est un vecteur normal au plan (ABC)

3) En déduire une équation cartésienne du plan (ABC)

D'après 2), on sait que
$$\overline{n}$$
 (1) est un recteur normal au plan (ABC)
Sait M ($x_1 y_1 y_3$) \in (ABC):
 \overline{AM} (y_{-2}) est authogonal \overline{a} \overline{m}
(y_{-3}) est authogonal \overline{a} \overline{m}
(y_{-2}) $= 0$
(y_{-3}) $= 0$
(y_{-2})

4) On admet que $H\left(-\frac{5}{6}; -\frac{5}{6}; \frac{5}{3}\right)$ est le projeté orthogonal du point D sur le plan (ABC)

Déterminer une représentation paramétrique de la droite (DH)

Sat M (x; y; z)
$$\in$$
 (DH):

DM (x; y; z) \in Stum we team directed de (DH)

Comme (DH) est orthogonal au plan (ABC), \in AT and sont colineares.

M, $=$ (1/2)

D'ou: $=$ Am, $=$ Am,

5) Sachant que l'aire du triangle (ABC) est $3\sqrt{6}$ cm², calculer en cm³, le volume du tétraèdre (ABCD).

$$V(ABCD) = \frac{1}{3} \times Avie(Base) \times Rauteur$$

$$= \frac{1}{3} \times Avie(Base) \times DH$$

$$a_{1} + \left(-\frac{5}{6}i - \frac{5}{6}i \frac{5}{3}\right)$$

$$DH = V(\alpha_{H} - \alpha_{D})^{2} + (\alpha_{H} - \alpha_{D})^{2} + (3_{H} - 3_{D})^{2}$$

$$= \sqrt{(-\frac{5}{6} - 1)^{2} + (-\frac{5}{6} - 1)^{2} + (\frac{5}{3} + 2)^{2}}$$

$$= \sqrt{(-\frac{11}{6})^{2} + (-\frac{11}{6})^{2} + (\frac{11}{3})^{2}}$$

$$= \sqrt{\frac{121}{36} + \frac{121}{36}} + \frac{121}{36}$$

$$= \sqrt{\frac{242}{36} + \frac{184}{36}} = \sqrt{\frac{426}{36}}$$

$$= \sqrt{\frac{146}{6}}$$

$$Sonc: V(ABCD) = \frac{1}{3} \times 3\sqrt{6} \times \frac{M\sqrt{6}}{6} = 11 \text{ cm}^{3}$$