Spé Maths
Terminale
(M Mangeard)

Cours: Fonction logarithme népérien

Année scolaire 2020/2021

Introduction:

John Napier (ou Néper) (1550-1617): Mathématicien, astronome, physicien, théologien écossais.

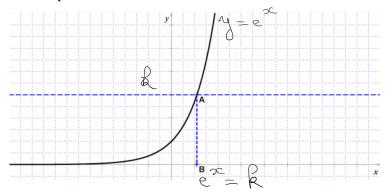
Il invente les logarithmes dans le but de faciliter le travail des calculateurs dans certains domaines (astronomie, navigation, banques, etc...) en « transformant » des multiplications en additions, plus faciles à effectuer. Avec Henry Briggs (1561-1630) (années du calendrier grégorien), mathématicien anglais, il invente et perfectionne les logarithmes décimaux.

Pré requis :

On suppose connue la fonction exponentielle et toutes ses propriétés.

I) Fonction logarithme népérien :

1) Lien avec la fonction exponentielle :



Soit k un réel strictement positif. On se demande si l'équation $e^x = k$ admet des solutions.

La fonction exponentielle est continue, strictement croissante sur $\mathbb R$ avec :

$$\lim_{x \to -\infty} e^x = 0 \quad \text{et } \lim_{x \to +\infty} e^x = +\infty.$$

D'autre part,
$$k\in]0\ ; \ +\infty[\ =\]\lim_{x\to -\infty}e^x\ ; \ \lim_{x\to +\infty}e^x[$$

D'où, d'après le corollaire du théorème des valeurs intermédiaires, l'équation $e^x = k$ admet une unique solution dans]0; $+\infty[$. On la note $\underline{ln(k)}$

2) Définition:

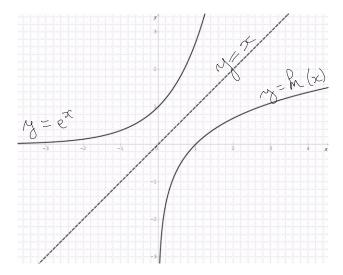
La fonction qui, à $k \in]0$; $+\infty[$ associe l'unique solution de l'équation $e^x = k$ est appelée <u>fonction</u> <u>logarithme népérien notée ln</u>

3) Conséquences de la définition :

a) Pour tout $(x;y) \in \mathbb{R}^{*+} \times \mathbb{R}$, nous avons l'équivalence suivante : $x = e^y \iff y = \ln(x)$

- b) Pour tout $x \in \mathbb{R}^{+}$, $e^{\ln(x)} = x$
- c) Pour tout $x \in \mathbb{R}$, $\ln(e^x) = x$
- d) Cas particuliers : $\boxed{\ln(1) = 0}$ (car $e^0 = 1$) $\boxed{\ln(e) = 1}$ (car $e^1 = e$) (on dit que ln est le logarithme de base e)

4) Propriété:



Dans un repère orthonormé, les courbes représentatives des fonctions exponentielles et logarithme népérien sont symétriques par rapport à la première bissectrice (= la droite d'équation y=x)

On dit alors que ces deux fonctions sont réciproques l'une de l'autre.

<u>Remarque :</u> La fonction racine carrée et la fonction carré sont réciproques l'une de l'autre sur $[0;+\infty[$

- 5) Variations de la fonction ln :
- a) Propriété:

La fonction ln est strictement croissante sur $]0;+\infty[$

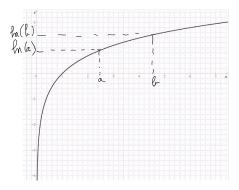
<u>Démonstration</u>:

Soient a et b, deux nombres réels tels que : 0 < a < b :

Autrement dit : $e^{ln(a)} < e^{ln(b)}$

Comme exponentielle est une fonction strictement croissante, alors : ln(a) < ln(b)

Donc: la fonction ln est strictement croissante sur $]0;+\infty[$



b) Propriété:

Pour tous réels a et b, strictement positifs,

$$ln(a) = ln(b) \Leftrightarrow a = b$$

$$ln(a) < ln(b) \Leftrightarrow a < b$$

$$ln(a) > 0 \Leftrightarrow a > 1$$

$$ln(a) < 0 \Leftrightarrow 0 < a < 1$$

Résolution d'équations et d'inéquations :

Exemples:

1) Résoudre l'équation ln(3x + 2) = 1

Tout d'abord, ln(3x + 2) est défini $\Leftrightarrow 3x + 2 > 0$

$$\Leftrightarrow x > -\frac{2}{3}$$

On va donc résoudre cette équation sur $\left]-\frac{2}{3};+\infty\right[$:

$$\ln(3x+2) = 1 \Leftrightarrow \ln(3x+2) = \ln(e) \Leftrightarrow 3x+2 = e \Leftrightarrow x = \frac{e-2}{3} > -\frac{2}{3}$$

Donc :
$$S = \{\frac{e-2}{3}\}$$

2) Résoudre l'inéquation : $ln(x^2 + 1) \ge ln(-x+5)$

Tout d'abord, $x^2 + 1 > 0$, pour tout $x \in \mathbb{R}$, d'où $\ln(x^2 + 1)$ est défini pour tout $x \in \mathbb{R}$

$$-x + 5 > 0 \Leftrightarrow -x > -5 \Leftrightarrow x < 5$$
. D'où : $\ln(-x+5)$ est défini pour tout $x \in]-\infty$;5[

On va donc résoudre cette inéquation sur]-∞ ;5[:

$$ln(x^2 + 1) \ge ln(-x+5) \iff x^2 + 1 \ge -x + 5$$

$$\Leftrightarrow$$
 $x^2 + x - 4 > 0$

$$\Delta = b^2 - 4ac = 1 - 4 \times 1 \times (-4) = 17 > 0$$

Le trinôme admet deux racines réelles distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{17}}{2}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - \sqrt{17}}{2}$

Le trinôme est du signe de a à l'extérieur de ses racines.

Or,
$$a = 1 > 0$$

$$D\text{'où}: x^2+x-4 \geq 0 \quad \Leftrightarrow \quad x \in]-\infty \ ; \frac{-1-\sqrt{17}}{2}] \cup [\frac{-1+\sqrt{17}}{2} \ ; +\infty[$$

Or,]-
$$\infty$$
; $\frac{-1-\sqrt{17}}{2}$] \cup [$\frac{-1+\sqrt{17}}{2}$;5[\subset]- ∞ ;5[, donc: $S =]-\infty$; $\frac{-1-\sqrt{17}}{2}$] \cup [$\frac{-1+\sqrt{17}}{2}$;5[

II) Propriétés algébriques du logarithme népérien :

1) Relation fonctionnelle:

Soient a et b , deux réels **strictement positifs**. Alors : $\ln(a \times b) = \ln(a) + \ln(b)$

Démonstration:

D'une part :
$$e^{\ln(a \times b)} = a \times b$$
, d'autre part : $e^{\ln(a) + \ln(b)} = e^{\ln(a)} \times e^{\ln(b)} = a \times b$

D'où:
$$e^{\ln(a \times b)} = e^{\ln(a)} \times e^{\ln(b)}$$

Or,
$$e^x = e^y \Leftrightarrow x = y$$
, donc: $\ln(a \times b) = \ln(a) + \ln(b)$

2) Logarithme d'un inverse, d'un quotient :

Soient a et b, deux réels strictement positifs :

a)
$$\ln\left(\frac{1}{b}\right) = -\ln(b)$$
 b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$

Démonstration:

a) Soit
$$b > 0$$
, on a: $b \times \frac{1}{b} = 1$. D'où: $\ln(b \times \frac{1}{b}) = \ln(1) = 0$

Or,
$$\ln(b \times \frac{1}{b}) = \ln(b) + \ln(\frac{1}{b})$$
, d'où : $\ln(b) + \ln(\frac{1}{b}) = 0$, c'est-à-dire : $\ln(\frac{1}{b}) = -\ln(b)$

b) Soient a et b, deux réels strictement positifs :

$$\ln\left(\frac{a}{b}\right) = \ln(a \times \frac{1}{b}) = \ln(a) + \ln(\frac{1}{b}) = \underline{\ln(a) - \ln(b)} \text{ (d'après a))}$$

Exemple:

Ecrire le nombre suivant en fonction de ln(2) et ln(3): $ln(\frac{12}{18e})$

$$\ln\left(\frac{12}{18e}\right) = \ln(12) - \ln(18e)$$

$$= \ln(3\times4) - (\ln(18) + \ln(e))$$

$$= \ln(3) + \ln(4) - (\ln(9\times2) + 1)$$

$$= \ln(3) + \ln(2\times2) - (\ln(9) + \ln(2) + 1)$$

$$= \ln(3) + \ln(2) + \ln(2) - (\ln(3\times3) + \ln(2) + 1)$$

$$= \ln(3) + 2\ln(2) - (\ln(3) + \ln(3) + \ln(2) + 1)$$

$$= -\ln(3) + \ln(2) - 1$$

3) Logarithme d'une puissance, d'une racine carrée :

a) Soit a , un réel strictement positif et $n \in \mathbb{Z}$:

$$\ln(a^n) = n \times \ln(a)$$

b) Soit a un réel strictement positif : $\ln(\sqrt{a}) = \frac{1}{2} \times \ln(a)$

Démonstration:

a)
$$e^{(\ln(a^n))} = a^n$$
 d'une part et , $e^{n \times \ln(a)} = \left(e^{\ln(a)}\right)^n = a^n$

$$D\text{'où}: e^{(\ln(a^n))} = e^{n \times \ln(a)} \quad (\text{or, } e^A = e^B \Leftrightarrow A = B)$$

Donc : $ln(a^n) = n \times ln(a)$

b) Soit a un réel strictement positif:

$$a = (\sqrt{a})^2$$
, d'où : $ln(a) = ln((\sqrt{a})^2) = 2ln(\sqrt{a})$

Donc:
$$\ln(\sqrt{a}) = \frac{1}{2} \times \ln(a)$$

Exemples:

a) Ecrire en fonction de ln(2) le nombre suivant : $ln(\sqrt{32})$

$$\ln(\sqrt{32}) = \frac{1}{2}\ln(32)$$

$$= \frac{1}{2}\ln(2^3 \times 2^2) = \frac{1}{2}(\ln(2^3) + \ln(2^2))$$

$$= \frac{1}{2}(3\ln(2) + 2\ln(2))$$

$$= \frac{5}{2}\ln(2)$$

b) Résolution d'une inéquation : (détermination d'un seuil)

Avant, on utilisait la calculatrice ou un programme avec une boucle non bornée (Tant que)

On sait que
$$\lim_{n\to+\infty} \left(\frac{3}{4}\right)^n = 0$$
, (car $-1 < \frac{3}{4} < 1$)

On souhaite déterminer le plus petit entier naturel à partir duquel $\left(\frac{3}{4}\right)^n < 0.01$

On a : $\ln\left(\frac{3}{4}\right)^n < \ln(0,01)$ (car ln est une fonction croissante sur]0;+ ∞ [)

D'où :
$$n \ln \left(\frac{3}{4} \right) < \ln(0.01)$$

ATTENTION:
$$\ln\left(\frac{3}{4}\right) < 0$$

D'où :
$$n > \frac{\ln(0,01)}{\ln(\frac{3}{4})} \approx 16,008$$
. On va prendre $n = 17$.

Remarque : Avec le programme Python ci-dessous, on peut résoudre le même problème :

On obtient bien n = 17

III) Etude de la fonction ln :

- 1) Dérivabilité et continuité de la fonction ln :
- La fonction ln est dérivable sur]0;+ ∞ [et sa dérivée est $\frac{1}{x}$] (= la fonction inverse)
- Comme ln est dérivable sur]0 ;+∞[, elle est aussi continue.

Démonstration:

Soit x > 0:

On pose $f(x) = e^{\ln(x)} = x$

f est dérivable sur $]0;+\infty[$, et f'(x) = $(\ln(x))$ ' × $e^{\ln(x)}$

Or, comme f(x) = x, f'(x) = 1

D'où :
$$(\ln(x))' \times e^{\ln(x)} = 1$$
, c'est-à-dire : $(\ln(x))' = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$

Remarque: Comme $\frac{1}{x}$ est strictement positive sur $]0;+\infty[$, on retrouve que ln est strictement croissante sur cet intervalle.

2) Limites en 0 et en $+\infty$:

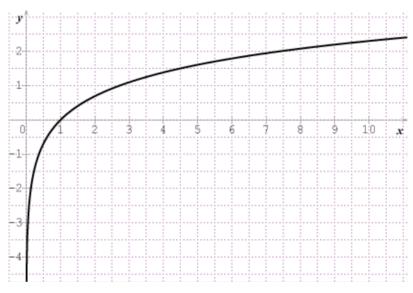
$$\lim_{x \to +\infty} \ln(x) = +\infty \qquad \text{et} \qquad \lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$$

3) Courbe représentative et variations :

Avec les limites précédentes, les variations de ln sur]0 ;+∞[, on peut dresser le tableau de variations :

Х	0 +∞
Signe de 1/x	+
Variations de ln	-8 +8

Courbe de ln :



4) Convexité:

Soit f(x) = ln(x)

f est dérivable sur]0 ;+ ∞ [et f '(x) = $\frac{1}{x}$ et $\frac{1}{x}$ est dérivable sur]0 ;+ ∞ [et $(\frac{1}{x})$ ' = - $\frac{1}{x^2}$

D'où : f ''(x) = $-\frac{1}{x^2}$ < 0, pour tout x \in]0; $+\infty$ [

C'est-à-dire : <u>In est une fonction concave sur $]0;+\infty[$ </u>

IV) Compléments : limites et fonctions ln(u(x)) :

1) Croissance comparée de x^n et de \ln en $+\infty$:

a) Cas n = 1:

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

Démonstration:

Tout d'abord, $\lim_{x\to +\infty} \ln(x) = +\infty$ et $\lim_{x\to +\infty} x = +\infty$, d'où : par quotient, on a une FI du type « ∞/∞ »

On a $x = e^{\ln(x)}$, $\frac{\ln(x)}{x} = \frac{\ln(x)}{e^{\ln(x)}}$. Si on pose $X = \ln(x)$, quand x tend vers $+\infty$, X tend vers $+\infty$

Or,
$$\lim_{X\to +\infty} \frac{e^X}{X} = +\infty$$
, par croissance comparée, d'où : $\lim_{X\to +\infty} \frac{X}{e^X} = 0$,

c'est-à-dire :
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

b) De manière générale, pour n entier naturel supérieur ou égal à 1,

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0 \quad \text{(résultat admis)}$$

2) Croissance comparée de xⁿ et de ln en 0 :

a) Cas n = 1:

$$\lim_{x\to 0} x \ln(x) = 0$$

<u>Démonstration</u>:

On a : $\lim_{x\to 0} x = 0$ et : $\lim_{x\to 0} \ln(x) = -\infty$, d'où par produit, on a une FI du type « $0\times\infty$ »

 $x = e^{\ln(x)}$, d'où : $x \ln(x) = e^{\ln(x)} \times \ln(x)$

On pose X = ln(x)

D'où : $x \ln(x) = Xe^{X}$. Or, quand x tend vers 0, $\ln(x)$ tend vers $-\infty$, c'est-à-dire X tend vers $-\infty$

Or, par croissance comparée, $\lim_{X \to -\infty} Xe^X = 0$

Donc:
$$\lim_{x\to 0} x \ln(x) = 0$$

b) De manière générale, pour n entier naturel supérieur ou égal à 1,

$$\lim_{x\to 0} x^n \ln(x) = 0$$

3) Fonctions ln(u(x)):

ln(u(x)) est définie si et seulement si u(x) > 0

Propriété:

Soit u une fonction strictement positive et dérivable sur $I \subset \mathbb{R}$.

Alors, ln(u) est dérivable sur I et :

$$[\ln(u)]' = \frac{u'}{u}$$

Exemple:

Etude des variations de la fonction f définie par :

$$f(x) = \ln\left(\frac{x+1}{x-1}\right).$$

f est définie $\Leftrightarrow \frac{x+1}{x-1} > 0$

Etude du signe de $\frac{x+1}{x-1}$:

X	-∞	-1		+1		∞ +
Signe de x+1	-	ф	+		+	
Signe de $x - 1$	-		-	0	+	
Signe de $\frac{x+1}{x-1}$	+	0	-		+	

D'où:

f est définie sur]-
$$\infty$$
;-1[\cup]1;+ ∞ [

f est également dérivable sur $]-\infty$; $-1[\cup]1$; $+\infty[$,

Or,
$$[\ln(u)]' = \frac{u'}{u} \text{ avec } u(x) = \frac{x+1}{x-1}$$

On pose $v_1(x) = x + 1$ et $v_2(x) = x - 1$

$$v_1'(x) = 1$$
 $v_2'(x) = 1$

Or,
$$\left(\frac{v_1}{v_2}\right)' = \frac{v_1'v_2 - v_1v_2'}{(v_2)^2}$$
, d'où : u'(x) = $\frac{x - 1 - (x + 1)}{(x - 1)^2} = \frac{-2}{(x - 1)^2}$

Donc: f'(x) =
$$\frac{\frac{-2}{(x-1)^2}}{\frac{x+1}{x-1}} = \frac{-2}{(x-1)^2} \times \frac{x-1}{x+1} = \frac{-2}{(x-1)(x+1)}$$

D'après l'étude de signe faite précédemment, (x-1)(x+1) > 0 sur $]-\infty$; $-1[\cup]1$; $+\infty[$

Donc f '(x) < 0, sur]- ∞ ;-1[\cup]1;+ ∞ [.

Autrement dit : f est strictement décroissante sur]-∞ ;-1[, puis également sur]1 ;+∞[

Détermination des limites de f aux bornes de son ensemble de définition :

$$\lim_{x\to +\infty} x+1 = \lim_{x\to +\infty} x-1 = +\infty, \text{ d'où par quotient, on a une FI du type} \ll \infty/\infty \text{ } >$$

On a:
$$\frac{x+1}{x-1} = \frac{x\left(1+\frac{1}{x}\right)}{x\left(1-\frac{1}{x}\right)}$$
. Or, $\lim_{x\to+\infty}\frac{1}{x} = \lim_{x\to+\infty}-\frac{1}{x} = 0$, d'où par somme, puis par quotient,

 $\frac{x+1}{x-1}$ tend vers 1 quand x tend vers $+\infty$

ln(X) tend vers 0 quand X tend vers 1

Par composée, $\lim_{x\to +\infty} \ln\left(\frac{x+1}{x-1}\right) = 0$ (IG: l'axe des abscisses est donc asymptote horizontale à la courbe de f en $+\infty$)

On raisonne de même en $-\infty$:

On obtient également : $\lim_{x\to-\infty} \ln\left(\frac{x+1}{x-1}\right) = 0$ (L'axe des abscisses est aussi asymptote horizontale à la courbe de f en $-\infty$)

 $En -1^{-}:$

$$\lim_{\substack{x \to -1 \\ x < -1}} x + 1 = 0^{-} (\text{car } x + 1 < 0, \text{ pour } x < -1)$$

$$\lim_{\substack{x \to -1 \\ x < -1}} x - 1 = -2 < 0, \text{ d'où, par quotient, } \frac{x+1}{x-1} \text{ tend vers } 0^+ \text{ quand x tend vers } -1^-$$

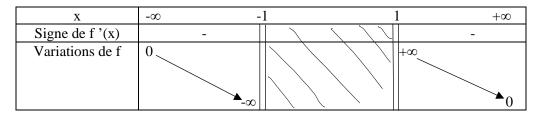
Or, ln(X) tend vers $-\infty$, quand X tend vers 0^+

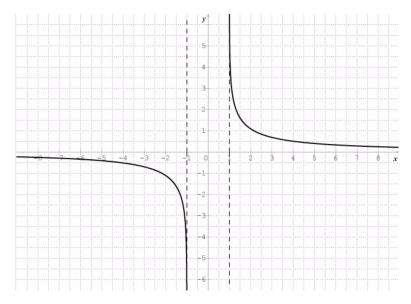
Par composée, $\lim_{\substack{x \to -1 \\ x < -1}} \ln \left(\frac{x+1}{x-1} \right) = -\infty$ (autrement dit : la droite d'équation x = -1 est asymptote verticale à la courbe de f)

En raisonnant de même en 1⁺, on obtient que $\lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{x+1}{x-1} \right) = +\infty$

(autrement dit : la droite d'équation x = 1 est asymptote verticale à la courbe de f)

D'où le tableau de variations de f sur]- ∞ ;-1[\cup]1;+ ∞ [:





Courbe de f et ses deux asymptotes verticales