Spé Maths
Terminale
(M Mangeard

Corrigé de l'évaluation n°4:

Limites de fonctions : Asymptotes/Calculs de limites

Fait le jeudi 26 novembre 2020

Exercice 1:

On donne le tableau de variations d'une fonction f définie sur \mathbb{R} :

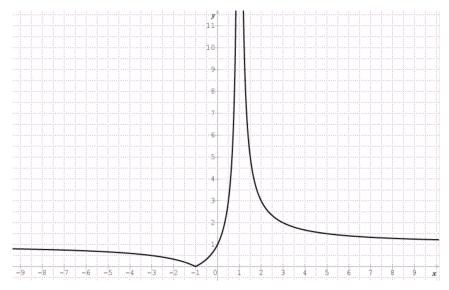
X	-∞	-2	1	+∞
Variations de f	1	+∞		0

Déterminer les éventuelles asymptotes à la courbe de f en justifiant par des limites lim f(x) = 1 (=) la drâte déquation y = 1 est asymptote Rougantale $x \to -\infty$ à la course de f on $-\infty$

lim f(x) = 0 (=7 la drate d'équation y = 0 (= l'axe des abraisses) est asymptote horisontale à la coube de fen tos lim $f(x) = +\infty$ et lim $f(x) = -\omega$ x > -2 x > -2(e) la drate d'équation x = -2 est asymptote verticale à la caube de f

Exercice 2:

Voici la courbe d'une fonction dans un repère du plan :



1) Par lecture graphique, conjecturer les limites suivantes :

 $\lim_{x \to -\infty} f(x) , \lim_{x \to +\infty} f(x) , \lim_{\substack{x \to 1 \\ x < 1}} f(x) \text{ et } \lim_{\substack{x \to 1 \\ x > 1}} f(x)$ Par lecture graphique: $\lim_{x \to -\infty} f(x) = 1 = \lim_{x \to +\infty} f(x)$ $\lim_{x \to -\infty} f(x) = +\infty = \lim_{x \to +\infty} f(x)$

2) En déduire les asymptotes éventuelles à (C_f) (on me lim $f(x) = \lim_{x \to -\infty} f(x) = 1$, alors la drate d'équation y = 1 est asymptote forisphale à (f_f) (on me lim $f(x) = +\infty = \lim_{x \to 1} f(x)$, alors la drate d'équation x = 1 est asymptote vertical à (f_f)

Exercice 3: Calculs de limites

Calculer les limites suivantes en justifiant :

1)
$$\lim_{x\to-\infty} \frac{x^3-x-1}{-2x^3+5}$$
 $\lim_{x\to-\infty} n^2 = -\infty$, $\lim_{x\to-\infty} -n = +\infty$

Par somme: More around the FI dutype $\int_{-\infty}^{\infty} -n = 0$

$$\int_{-\infty}^{\infty} \left(1 - \frac{1}{x^2} - \frac{1}{x^3}\right) = 0$$

$$\int_{-\infty}^{\infty} \left(-2 + \frac{5}{x^3}\right) = 0$$
Par somme: $\lim_{x\to-\infty} 1 - \frac{1}{x^2} - \frac{1}{x^3} = 1$ Par quotient: $\lim_{x\to-\infty} -2 + \frac{5}{x^3} = -2$

et $\lim_{x\to-\infty} -2 + \frac{5}{x^3} = -2$

2)
$$\lim_{x\to+\infty} \sqrt{x+3} - \sqrt{x+1}$$
 $\lim_{x\to+\infty} x+3 = +\infty$, $\lim_{x\to+\infty} \sqrt{x} = +\infty$

Par composition: $\lim_{x\to+\infty} \sqrt{x+3} = +\infty$ Par difference:

de même: $\lim_{x\to+\infty} \sqrt{x+1} = +\infty$ On a wine FI du type " $\infty - \infty$ "

Or, $(x+3) - \sqrt{x+1} = \frac{(\sqrt{x+3} - \sqrt{x+1})(\sqrt{x+3} + \sqrt{x+1})}{\sqrt{x+3} + \sqrt{x+1}} = \frac{2}{\sqrt{x+3} + \sqrt{x+1}}$
 $\lim_{x\to+\infty} \sqrt{x+3} + \sqrt{x+1} = +\infty$
 $\lim_{x\to+\infty} \sqrt{x+3} + \sqrt{x+1} = +\infty$

$$\lim_{x\to+\infty} \sqrt{x+3} + \sqrt{x+1} = +\infty$$

$$\lim_{x\to+\infty} \frac{2}{\sqrt{x+3} + \sqrt{x+1}} = 0$$

$$\lim_{x\to+\infty} \sqrt{x+3} + \sqrt{x+1} = 0$$

3)
$$\lim_{x\to +\infty} e^{-\sqrt{x}}$$
 $\lim_{x\to +\infty} \sqrt{x} = +\infty$ dia $\lim_{x\to +\infty} -\sqrt{x} = -\infty$
or, $\lim_{x\to -\infty} e^{-x} = 0$, dia $\lim_{x\to +\infty} -\sqrt{x} = -\infty$
 $\lim_{x\to +\infty} e^{-\sqrt{x}} = 0$. Lim $e^{-\sqrt{x}} = 0$

4)
$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{2x^2 + x}{x - 3}$$
 for quotient: cen appliquent la règle des signes du quotient: lim $x < -3 = 0^-$

$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{2x^2 + x}{x - 3} = 0$$

$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{2x^2 + x}{x - 3} = -\infty$$

$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{2x^2 + x}{x - 3} = -\infty$$

Par quotient: la règle des signes du quotient)

lim
$$\frac{2x^2+x}{x-3} = -\infty$$
 $x < 3$

5)
$$\lim_{x\to 2} \frac{3x^2-x-10}{x-2}$$

$$\lim_{x\to 2} 3x^2 - x - 10 = 3x2^2 - 2 - 10$$

$$= 12 - 2 - 10$$

$$= 0$$

$$\lim_{x\to 2} x - 7 = 0$$

$$\lim_{x\to 2} x - 7 = 0$$

$$D = b^{2} - 4ac$$
= $(-1)^{2} - 4x 3x (-10)$
= $1 + 120 = 12170$; le tripôme a deux racines réales distinctes
$$x_{1} = \frac{-b+\sqrt{\Delta}}{2a} = \frac{1+11}{6} = 2 \text{ et } x_{2} = \frac{-b-\sqrt{\Delta}}{2a} = \frac{1-11}{6} = -\frac{5}{3}$$

$$3x^{2} - x - 10 = 3(x - x_{1})(x - x_{2})$$

= $3(x - 2)(x + \frac{5}{3})$

$$\frac{3x^{2}-x-10}{x-2} = \frac{3(x+2)(x+\frac{5}{3})}{x-2} = 3(x+\frac{5}{3})$$

$$= 3x + 5$$

$$\lim_{x\to 2} 3x+5=3x^2+5=11$$
c'est-à-due:

$$\lim_{x \to 2} \frac{3x^2 - x - 10}{x - 2} = 11$$