Corrigé de l'évaluation n° 3 :

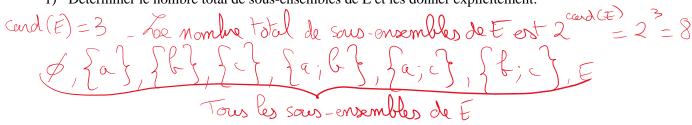
Dénombrements / Rappels et compléments sur la fonction exponentielle

Fait le vendredi 13 novembre 2020

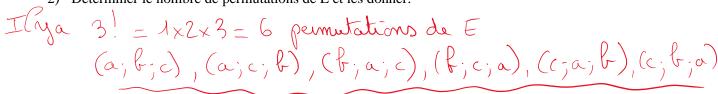
Exercice 1: (4 pts)

On considère un ensemble $E = \{a; b; c\}$

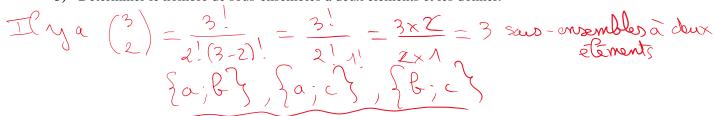
1) Déterminer le nombre total de sous-ensembles de E et les donner explicitement.



2) Déterminer le nombre de permutations de E et les donner.



3) Déterminer le nombre de sous-ensembles à deux éléments et les donner.



4) Déterminer le nombre de couples de E et les donner.

Il y a : 3 = 9 couples d'éléments de E () peut ; aven des cauples (a; a), (b; b), (c; c), (a; b), (a; c), (f; a), (f; c)

(c; a), (c; b)

Exercice 2: (4 pts)

On cherche à constituer un groupe de six personnes choisies par vingt-cinq femmes et trente-deux hommes.

1) Combien de façons y a-t-il de constituer ce groupe ?

Cela consiste à compter le nombre de sores-ensemble à six étéments dans un ensemble à 25+32=57 étéments.

Il y en a $\binom{57}{6}=\frac{57!}{6!(57-6)!}=\frac{57!}{6!51!}=36288252$

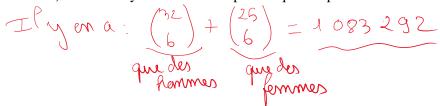
NOM:	Prénom:
110111	1 ICHOIH

2) Combien y en a-t-il ne comportant que des hommes?

I faut donc compter le nombre de sous-ensembles à six éléments dans un ensemble à trente-deux éléments (= le nhue d'hommes)

If y en a:
$$\binom{32}{6} = \frac{32!}{6!(32-6)!} = \frac{306}{192}$$

3) Combien y en a-t-il ne comportant que des personnes de même sexe ?



4) Combien y en a-t-il comportant au moins une femme et au moins un homme.

$$c'ent-a-dire:36288252-906192-147100$$

$$=35204960$$

Exercice 3 : (12 pts)

- 1) On considère l'expression : $A = (e^{3x} + e^{-x})^3$
 - a) A l'aide du triangle de Pascal, déterminer les coefficients du développement de $(a + b)^3$

$$(a + b)^3 = \lambda a^3 + 3 \cdot a^2b + 3 \cdot ab^2 + \lambda \cdot b^3$$

b) Développer et réduire A en utilisant a)
$$A = \begin{pmatrix} 3x \\ 2 \end{pmatrix}^{3} + 3 \begin{pmatrix} 3x \\ 2 \end{pmatrix}^{2} + 3 \begin{pmatrix} 3x \\ 2 \end{pmatrix}^{2} + 3 \begin{pmatrix} 3x \\ 2 \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}^{2} + 4 \begin{pmatrix} 2x \\ 2x \\ 2x \end{pmatrix}$$

2) Résoudre e $^{4x+3} > 1$

$$e^{4x+3} > e^{6} = 4x+3 > 0$$
 (can $e^{a} > e^{6} = 1 = 0 > 6$)
 $= 1 + 1 + 2 + 3 > 0$ (can $e^{a} > e^{6} = 1 = 0 > 6$)
 $= 1 + 2 + 3 > 0$ (can $e^{a} > e^{6} = 1 = 0 > 6$)

Done:
$$S = \sqrt{-\frac{3}{4}} + \infty$$

3) Soit
$$f(x) = e^{2x}(x^2 - 1)$$

et
$$g(x) = \frac{e^x}{e^x + 3}$$

f est derivable sur IR.

Posons
$$u(x) = e^{2x}$$
 $v(x) = x^2 - e^{2x}$ $v(x) = 2x$

on, $(uv)' = u'v + uv'$

$$f(x) = 2e^{2x}(x^2 - 1) + 2xe$$

$$= 2e^{2x}(x^2 + x - 1)$$

Calculer f' et g' en détaillant.

Set deivable sun IR.

Posons
$$u(x) = e^{2x}$$
 $v(x) = x^2 - 1$
 $u'(x) = de^{2x}$ $v'(x) = 2x$
 $u'(x) = de^{2x}$ $v'(x) = 2x$
 $u'(x) = e^{x}$ $v'(x) = e^{x}$
 $u'(x) = e^{x}$

4) Soit $h(x) = e^{3x^2 + 2x - 1}$ a) Calculer h' R est dérivable sur \mathbb{R} . On pose $u(x) = 3x^2 + 2x - 1$ u'(x) = 6x + 2

$$on_{1}(e^{x})^{2} = u^{2}e^{x}$$

 $o(x) = (6x+2)e^{3x^{2}+2x-1}$

b) En déduire les variations de h (on dressera le tableau de variations de h sur R)

>0, pointait $x \in \mathbb{R}$ et $6x+2>0 = x>-\frac{2}{6}=-\frac{1}{3}$ D'ai le tableau de variations de R sur R:

Sun
$$\mathbb{R}$$
:
$$\mathbb{R} \left(-\frac{1}{3} \right) = e^{\frac{1}{3} - \frac{2}{3} - 1}$$

$$= e^{\frac{1}{3} - \frac{2}{3}} - \frac{4}{3}$$

$$= e^{\frac{1}{3} - \frac{2}{3}} - \frac{4}{3}$$