Exercice n°1: (/1 point) $\approx 5 min$

Soit n un entier naturel non nul, démontrer que n et n+1 sont toujours premiers entre eux.

Exercice n°2: (/4 points) ≈ 10 min

Déterminer tous les couples d'entiers naturels non nuls (x; y) avec x < y tels que $\begin{cases} x + y = 72 \\ pgcd(x; y) = 8 \end{cases}$

Exercice $n^{\circ}3$: (6,5 points) $\approx 20 \text{ min}$

Soit n un entier naturel, on pose a = 2n + 3 et b = 3n + 2On note d = pgcd(a; b)

- 1) Démontrer que d = 1 ou d = 5
- 2) Recopier et compléter le tableau de congruences ci-dessous :

n ≡ [5]	0	1	2	3	4
$a \equiv [5]$					
$b \equiv [5]$					

- 3) En déduire que d=5 si et seulement si $n=5q+1, q\in\mathbb{Z}$
- 4) Que peut-on alors dire de a et b lorsque $n \neq 5q + 1, q \in \mathbb{Z}$?
- 5) Dans cette question, on pose a = 59 et b = 86
 - a) En utilisant les résultats obtenus précédemment, préciser la valeur de pgcd(a; b). Justifier votre réponse.
 - b) Retrouver ce résultat en utilisant l'algorithme d'Euclide ou le théorème de Bezout.