Résolutions d'équations du second degré + propriétés des racines + factorisations

Exercice 1:

Résoudre les équations suivantes :

1)
$$11x^2 - 6x - 5 = 0$$

2)
$$49x^2 - 42x + 9 = 0$$

3)
$$3x^2 + x + 7 = 0$$

4)
$$x^2 = x + 1$$

5)
$$(3x + 1)^2 - 64 = 0$$

1)
$$11x^2 - 6x - 5 = 0$$
 2) $49x^2 - 42x + 9 = 0$ 3) $3x^2 + x + 7 = 0$
4) $x^2 = x + 1$ 5) $(3x + 1)^2 - 64 = 0$ 6) $(2x + 3)^2 - (7x - 8)^2 = 0$

Exercice 2:

Soit $f(x) = -4 - 3x + x^2$

- 1) Calculer f(-1). Que peut-on en déduire concernant -1 pour f ? (Faire une phrase)
- 2) Calculer Δ . Que peut-on en déduire pour f?
- 3) A l'aide de la formule de la somme des racines ou de celle du produit, calculer la valeur exacte de la deuxième racine.

Exercice 3:

Soit $f(x) = ax^2 + bx + c$, avec $a \neq 0$

Tel que : $b^2 - 4ac > 0$

On note x_1 et x_2 , les deux racines distinctes de f.

Montrer que $x_1 \times x_2 = \frac{c}{a}$

Exercice 4:

Soit $f(x) = ax^2 + bx + c$, avec $a \neq 0$

Tel que : $b^2 - 4ac > 0$

On note x_1 et x_2 , les deux racines distinctes de f.

- 1) Montrer que x_1 et x_2 sont solutions de l'équation (E) : $x^2 Sx + P = 0$, où S et P désignent respectivement la somme et le produit des deux racines de f.
- 2) Application:

On connaît la somme de deux nombres = $\frac{5}{4}$ et leur produit = $\frac{3}{8}$

Calculer ces deux nombres.

Exercice 5:

Factoriser les trinômes suivants (quand c'est possible) en justifiant :

1)
$$f(x) = 7x^2 - 4x - 20$$

2)
$$g(x) = -x^2 + 2x - 5$$

1)
$$f(x) = 7x^2 - 4x - 20$$
 2) $g(x) = -x^2 + 2x - 5$ 3) $h(x) = 25x^2 + 4 - 20x$