Spé Matl	ıs
Premièr	e

Chapitre I: Second degré

Année scolaire 2022/2023

I) Fonction trinôme du second degré :

1) Définition:

Soient a, b, c et d, quatre réels avec $a \neq 0$.

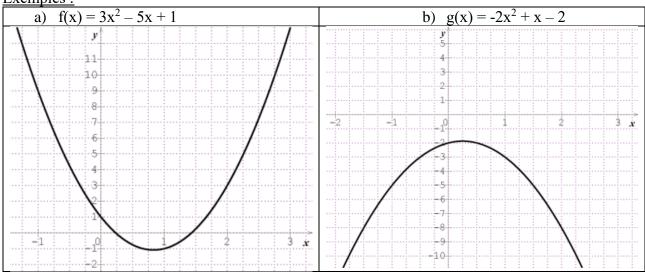
On considère la fonction f qui, à tout nombre réel x associe $ax^2 + bx + c$.

La fonction f est appelée ______ou ____ou encore _____

2) Représentation graphique :

Toute fonction trinôme du second degré se représente graphiquement sous la formedans un repère orthogonal du plan.

Exemples:



Remarque:

Le coefficient a donne l'orientation de la parabole :

- Si a > 0, alors la parabole est orientée
- Si a < 0, alors la parabole est orientée

3) Forme canonique:

On considère f, un trinôme du second degré. $f(x) = ax^2 + bx + c$, avec $a \ne 0$

Alors f peut s'écrire sous la forme :

 $f(x) = \dots$ où α et β sont deux réels.

Cette écriture est unique pour chaque f.

Cette notation s'appelle <u>la forme</u>.....du trinôme f.

Démonstration:

Exemples:

- a) $f(x) = 4(x-2)^2 + 5$ est la forme canonique d'un trinôme du second degré avec : $\begin{cases} \alpha = \cdots \\ \alpha = \cdots \\ \beta = \cdots \end{cases}$ b) $g(x) = -2x^2 + 3x 1$ (Pour voir comment obtanis la forme du second degré avec : $\begin{cases} \alpha = \cdots \\ \beta = \cdots \end{cases}$
- b) $g(x) = -2x^2 + 3x 1$ (Pour voir comment obtenir la forme canonique d'un trinôme du second degré, voir : http://mangeard.maths.free.fr/Ecole/JeanXXIII/PremiereS/revisions canonique.pdf)

4) Variations:

Soit $f(x) = ax^2 + bx + c$, avec $a \neq 0$

	Si a < 0		Si a > 0	
f est d'abore	d, puis			
<u>Tableau de variations de f :</u>		<u>Tableau de variations de f :</u>		
X	-∞ +∞	X	-∞ ···· +∞	
Variations		Variations		
de f		de f		
Avec $\alpha = \frac{-b}{2a}$ et $\beta = f(\alpha)$ Le point S de coordonnées $(\alpha; \beta)$ est le sommet de la parabole représentant f.		Le point S d	et $\beta = f(\alpha)$ e coordonnées $(\alpha; \beta)$ est le a parabole représentant f.	

Exemple :

Soit
$$f(x) = -3x^2 + x - 1$$

On a:

II) Equations du second degré :

1) Résolution de l'équation $ax^2 + bx + c = 0$ avec $a \neq 0$

a) Méthode graphique : (Rappel de seconde)

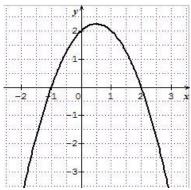
Exemple:

On considère l'équation $-x^2 + x + 2 = 0$ (E)

On pose $f(x) = -x^2 + x + 2$

Résoudre (E) revient à résoudre f(X) = 0

C'est-à-dire : déterminer les abscisses des points d'intersection de la parabole représentant f avec l'axe des abscisses.



Par lecture graphique, on trouve deux solutions :

b) Méthode algébrique :

On souhaite résoudre l'équation $ax^2 + bx + c = 0$ avec $a \neq 0$

On va suivre l'algorithme de résolution suivant :

- On commence par calculer le discriminant Δ	du trinôme dont l'expression en fonction des
coefficients est donnée par : $\Delta = b^2 - 4ac$	-
3 cas vont se présenter :	

- Soit $\Delta < 0$, alors

- Soit $\Delta = 0$, alors

- Soit $\Delta > 0$, alors

Démonstration:

Exemples:

1) Résoudre l'équation : $2x^2 - 4x + 2 = 0$

2) Résoudre l'équation $x^2 + x - 6 = 0$

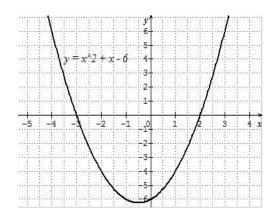
2) Somme et produit des racines :

Soit $f(x) = ax^2 + bx + c$, avec $a \neq 0$ tel que $\Delta > 0$ Notons x_1 et x_2 , les deux racines réelles distinctes de f. Alors :

$$x_1 + x_2 = -\frac{b}{a}$$

$$et \quad x_1 \times x_2 = \frac{c}{a}$$

<u>Démonstration</u>:



Exemple d'application:

On considère $f(x) = 5x^2 - 6x + 1$

- a) Montrer que 1 est une racine de f.
- b) En utilisant la somme ou le produit des racines de f, calculer la deuxième racine.

3) Factorisation:

On considère une équation du second degré (E) : $aX^2 + bX + c = 0$ (avec $a \ne 0$)

- Si (E) n'a pas de solution, on ne peut pas factoriser $ax^2 + bx + c$
- Si (E) a une seule solution X_0 (solution double), alors $aX^2 + bX + c = \dots$
- Si (E) a deux solutions X_1 et X_2 , alors $aX^2 + bX + c = \dots$

<u>Démonstration</u>:

Facile en passant par la forme canonique

Exemples: $2x^2 - 4x + 2 = 2(x - 1)^2$ et $x^2 + x - 6 = (x - 2)(x + 3)$

III) Signe d'un trinôme du second degré. Inéquations du second degré :

1) Exemples : découverte graphique

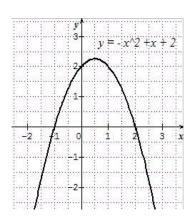
a)
$$f(x) = x^2 + x - 6$$

Par lecture graphique:

 $f(X) \ge 0$ pour $X \in]-\infty$; -3] $\cup [2; +\infty[$ (autrement dit « à l'extérieur des racines »)

f(x) < 0 pour $x \in]-3$; 2[(autrement dit « entre les racines »)

b)
$$g(X) = -X^2 + X + 2$$



Par lecture graphique:

 $g(X) \ge 0$ pour $X \in [-1; 2]$ (autrement dit « entre les racines »)

g(X) < 0 pour $X \in]-\infty$; $-1[\cup]2$; $+\infty[$ (autrement dit « à l'extérieur des racines »)

Remarque: Le coefficient de X² est positif pour la fonction f et négatif pour g

2) Propriété:

Soit $ax^2 + bx + c$ avec $a \neq 0$ et Δ son discriminant. Trois cas sont à envisager :

- a) Soit $\Delta < 0$, alors le trinôme est <u>du signe de a pour toutes les valeurs de X</u>
- b) Soit $\Delta = 0$, alors le trinôme est <u>du signe de a et s'annule en $\mathbf{X} = \frac{-b}{2a}$ </u>
- c) Soit $\Delta > 0$, alors le trinôme est <u>du signe de a à l'extérieur des racines et du signe de a à l'intérieur.</u>

Démonstration:

a) On sait que : $aX^2 + bX + c = a[(X - \alpha)^2 - \frac{\Delta}{4a^2}]$ (forme canonique)

Or, $\Delta < 0$, d'où : $-\frac{\Delta}{4a^2} > 0$ C'est-à-dire : $(x - \alpha)^2 - \frac{\Delta}{4a^2} > 0$

Donc : le trinôme est bien du signe de a pour toutes les valeurs de X

b) Comme $\Delta = 0$, $ax^2 + bx + c = a(x - x_0)^2$ avec x_0 racine double du trinôme.

Or, $(X - X_0)^2 \ge 0$

Donc : <u>le trinôme est bien du signe de a</u> pour toutes les valeurs de X et s'annule en X_0

c) Comme $\Delta > 0$: $aX^2 + bX + c = a(X - X_1)((X - X_2))$ où X_1 et X_2 sont les deux racines du trinôme.

Supposons $X_1 < X_2$

Tableau de signes :

X	-∞	\mathbf{X}_1	\mathbf{X}_2 + ∞
X- X ₁	- () +	+
X - X2	-	- (+
$(X-X_1)(X-X_2)$	+ () - (+
$a(X-X_1)(X-X_2)$	Signe de a	Signe de - a	Signe de a

Donc : le trinôme est bien du signe de a à l'extérieur des racines et du signe de – a à l'intérieur.

Exemples:

a) Etude du signe de $X^2 + 3X - 4$:

x	$-\infty$		-4		1		+ ∞
$x^2 + 3x - 4$		+	0	_	0	+	

Autrement dit:

b) Résoudre l'inéquation suivante : $3x^2 - 9x - 30 < 0$