Applications de la dérivation

Mars 2020

1) Dérivation et variations :

a) Activité de découverte :

On considère une fonction f définie sur \mathbb{R} par $f(x) = 3x^2 - 5x + 7$

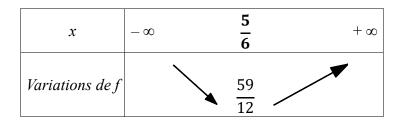
- 1) Etudier les variations de f
- 2) Calculer f'
- 3) Etudier le signe de f'
- 4) Mettre en parallèle le tableau de variation de f et le tableau de signe de f'. Que constate-t-on?

1)
$$f(x) = ax^2 + bx + c$$
 (trinôme du second degré) avec $a = 3$, $b = -5$ et $c = 7$

- Comme a > 0, la parabole représentant f est orientée vers le haut, autrement dit, f est d'abord décroissante puis ensuite croissante.
- Soit $S(\alpha; \beta)$ le sommet de la parabole :

$$\alpha = \frac{-b}{2a} = \frac{5}{6}$$
 et $\beta = f(\alpha) = 3 (\frac{5}{6})^2 - 5x \frac{5}{6} + 7$
= $\frac{25}{12} = \frac{25}{6} + \frac{84}{12}$
= $\frac{59}{12}$

D'où le tableau de variation suivant :



2) f étant un trinôme du second degré, f est dérivable sur R

$$f'(x) = 6x - 5$$

3) Signe de f':

$$6 x - 5 > 0$$

$$\iff X > \frac{5}{6}$$

D'où le tableau de signes suivant :

x	$-\infty$	<u>5</u>	+ ∞
Signe de f'(x)	_	- 0	+

4) Si on met en parallèle le tableau de variation de f avec le tableau de signes de f

х	$-\infty$		<u>5</u>		$+\infty$
Signe de f'(x)		_	0	+	

x	- ∞	<u>5</u>		+ ∞
Variations de f		59 12	A	

Il semble y avoir un lien direct entre ces deux tableaux : quand f' est négative, alors f est décroissante, quand f' est positive, alors f est croissante.

b) Propriété:

Soit f une fonction définie et dérivable sur un intervalle I $\subset \mathbb{R}$

- Si f' est négative sur $J \subset I$, alors <u>f est décroissante sur J</u> (f' peut s'annuler en quelques points de J)
- Si f' est positive sur J⊂I, alors f est croissante sur J (f' peut s'annuler en quelques points de J)
- Si f' = 0 sur $J \subset I$, alors f est constante sur J

Exemple:

$$\overline{\text{Soit f(x)}} = 2x^3 - 3x^2 + 1$$

f est dérivable sur $\ensuremath{\mathbb{R}}$ car c'est un polynôme.

$$f(x) = 2x3 x^2 - 3x2 x = 6 x^2 - 6 x = 6 x(x-1)$$

On va étudier le signe de f':

$$6 x \ge 0 \iff x \ge 0$$

$$x-1 \ge 0 \iff x \ge 1$$

Tableau de signes :

X	-∞	0		1		+∞
Signe de 6 x		-	+		+	
Signe de x - 1		-	-	() +	
Signe de f		+	-	(+	

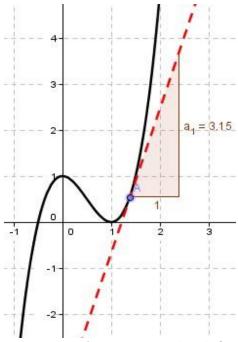
En fait, on va regrouper le signe de f et les variations de f dans le même tableau :

Tableau de variation de f :

X	$-\infty$		0		1		$+\infty$
Signe de f'(x)		+	0	_	0	+	
Variations de f			1		0		

2) Notion d'extremum local:

Activité Geogebra de découverte :



Sur]-1; 1[, f admet <u>un maximum local</u> qui vaut 1 et sur]0;2[, f admet <u>un minimum local</u> qui vaut 0.

La notion d'extremum local implique de cantonner l'étude à un intervalle ouvert n'étant pas obligatoirement égal au domaine de définition complet.

La fonction représentée est définie sur \mathbb{R} .

I n'est pas un maximum de f sur tout \mathbb{R} . C'est la même chose pour 0: minimum de f.

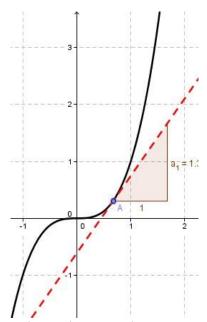
Dans l'activité précédente, on voit que pour x < 1, f'(x) > 0 puis pour x > 1, f'(x) < 0 avec f'(1) = 0

La fonction f admet <u>un extremum local</u> en a si et seulement si : $\underline{f'(a) = 0}$ <u>et</u> $\underline{f'}$ change de signe en a

Remarque: ATTENTION les deux conditions doivent être vérifiées.

Exemple: Soit f la fonction cube en x = 0

 $f(x) = x^3$ d'où $f(x) = 3x^2$ f(0) = 0 mais f' ne change pas de signe en 0



La fonction cube n'admet pas d'extremum local en 0

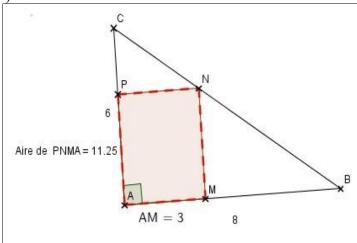
3) Optimisation:

Dans certaines situatons, on est amené à déterminer les éventuels extremas d'une fonction pour minimiser ou ,dans d'autres cas, pour maximiser une certaine quantité :

- Chercher un coût minimum
- Chercher une aire maximale
- Optimiser des volumes
- Déterminer la distance d'un point à une courbe, etc...

Exemples:

a) Aire maximale:



ABC est un triangle rectangle en A tel que AB = 8 cm et AC = 6 cm.M est un point mobile du segment [AB]. On pose x = AMOn trace le rectangle AMNP. Question : Pour quelle valeur de x l'aire du rectangle AMNP est maximale?

Pour conjecturer la valeur de x, cliquer sur le lien suivant :

http://mangeard.maths.free.fr/Ecole/JeanXXIII/PremiereS/optimisation aire001.html

Exprimons MN en fonction de x :

Dans le triangle ABC, (MN) // (AC), appliquons le théorème de Thalès : $\frac{BM}{BA} = \frac{MN}{AC} \text{ d'où } : \frac{8-x}{8} = \frac{MN}{6}$

$$\frac{BM}{BA} = \frac{MN}{AC}$$
 d'où : $\frac{8-x}{8} = \frac{MN}{6}$

Alors MN =
$$\frac{6(8-x)}{8} - \frac{3(8-x)}{4}$$

Or, Aire(AMNP) = AMxMN =
$$\frac{3(8-x)}{4}x$$
 $x = \frac{-3x^2+24x}{4} = -\frac{3}{4}x^2 + 6x$

On pose f(x) =
$$-\frac{3}{4}x^2 + 6x$$

f est dérivable sur \mathbb{R} car c'est un polynôme.

On a f(x) =
$$-\frac{3}{2}x + 6$$

$$f(x) \ge 0 \iff -\frac{3}{2}x + 6 \ge 0 \iff -\frac{3}{2}x \ge -6 \iff x \le 4$$

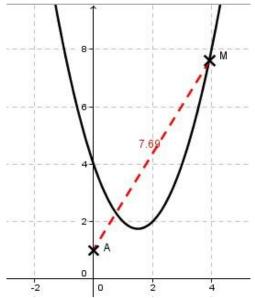
En x = 4, f' s'annule et change de signe. Donc, f admet en 4 un extremum local (ici un maximum)

Par conséquent :

L'aire du rectangle AMNP est maximale et vaut 12 = f(4) cm² pour x = 4 cm

b) Distance d'un point à une parabole :

On a tracé la parabole représentant la fonction f définie par $f(x) = x^2 - 3x + 4$ dans un repère orthonormé du plan.



Le point A de coordonnées (0;1) est fixe.

M est un point mobile sur la parabole.

Question : déterminer les coordonnées de M qui minimisent la distance AM.

Exprimons AM en fonction de X:

$$AM = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2} = \sqrt{x^2 + (y - 1)^2}$$
Or, $y = x^2 - 3x + 4$ d'où : $(y - 1)^2 = (x^2 - 3x + 3)^2 = (x^2 - (3x - 3))^2$

$$= x^4 - 2x^2(3x - 3) + (3x - 3)^2$$

$$= x^4 - 6x^3 + 6x^2 + 9x^2 - 18x + 9$$

$$= x^4 - 6x^3 + 15x^2 - 18x + 9$$

D'où:
$$X^2 + (y-1)^2 = X^4 - 6X^3 + 16X^2 - 18X + 9 = AM^2$$

Posons f(x) =
$$x^4 - 6x^3 + 16x^2 - 18x + 9$$

f est un polynôme donc elle est dérivable sur \mathbb{R} .

$$f(x) = 4 x^3 - 18 x^2 + 32 x - 18$$

1 est racine évidente de ce polynôme. En effet, $4x1^3 - 18x1^2 + 32x1 - 18 = 0$

D'où:
$$4 x^3 - 18 x^2 + 32 x - 18 = (x - 1)(a x^2 + b x + c)$$

Pour déterminer les coefficients a, b et c, on développe le membre de droite et on identifie à celui de gauche:

$$(X-1)(a X^2 + b X + c) = a X^3 + b X^2 + c X - a X^2 - b X - c$$

= $a X^3 + X^2(b-a) + X(c-b) - c$

D'où en identifiant les coefficients de même degré :

$$a = 4$$

 $b - a = -18$ Alors: $a = 4$, $b = -14$ et $c = 18$
 $c - b = 32$
 $-c = -18$

Donc: $f(x) = (x - 1)(4x^2 - 14x + 18)$

Or, pour
$$4x^2$$
 - 14 x + 18, on a : $\Delta = 14^2 - 4x4x18 = -92 < 0$

Donc le trinôme est strictement positif.

$$f'(X) = 0$$
 si et seulement si $X - 1 = 0$
si et seulement si $X = 1$

Les coordonnées de M qui minimisent AM sont donc : (1;f(1)) c'est-à-dire (1;2) et cette distance minimum est de $\sqrt{1-6+16-18+9} = \sqrt{2}$