Spé Maths
Première
(M Mangeard)

<u>Produit scalaire et applications</u>

Année scolaire 2019/2020

I) Produit scalaire et orthogonalité :

On se place dans un repère orthonormé (O ; $\vec{\iota}_{,\vec{J}}$) du plan.

1) Définition analytique du produit scalaire :

Soient $\vec{u}(x; y)$ et $\vec{u'}(x'; y')$. On appelle <u>produit scalaire</u> de \vec{u} par $\vec{u'}$ <u>le réel</u> noté : \vec{u} . $\vec{u'}$ défini par :

 \vec{u} , $\vec{u'}$ =

Exemples:

a) Soient $\vec{u}(3;6)$ et $\vec{v}(-5;7)$

Alors: $\vec{u} \cdot \vec{v} = \underline{\dots}$

b) Soient \vec{u} (2; -1) et \vec{v} = $\vec{0}$

On sait que $\vec{v}(0;0)$ d'où : $\vec{u}.\vec{v}$ =

Autrement dit : Si on calcule le produit scalaire d'un vecteur avec le vecteur nul, alors ce produit scalaire est égal à 0

c) Soit $\vec{u}(x,y)$, alors \vec{u} . \vec{u} = x^2 + y^2

On note ce nombre \vec{u}^2 : on l'appelle <u>le carré scalaire</u> de \vec{u}

2) Propriétés:

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs et $\lambda \in \mathbb{R}$:

a) Symétrie :
$$\vec{u}$$
. \vec{v} = \vec{v} . \vec{u}

b)
$$\vec{u}$$
. $(\lambda \vec{v}) = \lambda \vec{u} \cdot \vec{v}$

c)
$$\vec{u}$$
. (\vec{v} + \vec{w}) = \vec{u} . \vec{v} + \vec{u} . \vec{w}

d) <u>Identités remarquables :</u>

$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u}. \vec{v} + \vec{v}^2$$

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$

Démonstrations :

Soient $\vec{u}(x;y)$, $\vec{v}(x';y')$ et $\vec{w}(x'';y'')$

a)
$$\vec{u}$$
. \vec{v} = XX' + YY' et \vec{v} . \vec{u} = X'X + Y'Y = XX' + YY' = \vec{u} . \vec{v}

b)

c)
$$\vec{v} + \vec{w}(x' + x''; y' + y'')$$
 d'où: $\vec{u} \cdot (\vec{v} + \vec{w}) = x(x' + x'') + y(y' + y'')$
= $xx' + yy' + xx'' + yy''$
= $\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

d)
$$(\vec{u} + \vec{v})^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$$

Or,
$$\vec{u}$$
+ \vec{v} (x + x'; y + y')

D'où: $(\vec{u} + \vec{v})^2$ a pour coordonnées $((x + x')^2; (y + y')^2)$

C'est-à-dire: $(x^2 + 2xx' + x'^2; y^2 + 2yy' + y'^2) = (x^2; y^2) + 2(xx' + yy') + (x'^2; y'^2)$

Or, $\vec{u}^2(x^2; y^2)$ et $\vec{v}^2(x'^2; y'^2)$ et 2 \vec{u} . \vec{v} = 2 (xx' + yy')

Donc: $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$

On montre de même les deux autres identités.

3) Vecteurs orthogonaux :

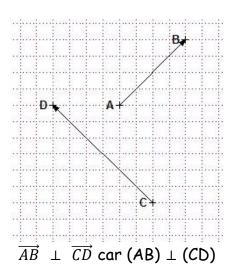
a) Définition :

Deux vecteurs \vec{u} et \vec{v} sont dits <u>orthogonaux</u> soit si, soit

si

Notation : $\vec{u} \perp \vec{v}$

Exemple:



b) Propriété:

$$\vec{u} \perp \vec{v} \Leftrightarrow$$

Exemple:

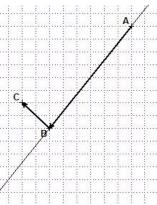
Avec les points A, B, C et D représentés précédemment, en prenant un petit carreau comme unité sur les deux axes de notre repère , on a $\overrightarrow{AB}(.....)$ et $\overrightarrow{CD}(....)$

 $\mathsf{D'où}: \overrightarrow{AB}. \overrightarrow{CD} = \dots$

4) Application1 : Equation de droite

a) Définition d'un vecteur normal à une droite :

C'est un vecteur non-nul, orthogonal à tout vecteur directeur de la droite.



 \overrightarrow{BC} est orthogonal à \overrightarrow{AB} : \overrightarrow{BC} est <u>un vecteur normal</u> à la droite (AB) b) Coordonnées d'un vecteur normal :

Si une droite (d) a pour équation cartésienne a x + b y + c = 0 (avec $(a,b) \neq (0,0)$),

alors \overrightarrow{n}est un vecteur normal à la droite (d).

Démonstration :

On sait que $\vec{u}(-b; a)$ est un vecteur directeur de la droite (d).

Or, \vec{n} . \vec{u} = ax(-b) + bxa = 0 $\Leftrightarrow \vec{n} \perp \vec{u}$

 \vec{n} est donc bien un vecteur normal à la droite (d)

Exemple d'application :

Soit (d): $3 \times 4 = 0$ et A(-3;1). Déterminer une équation cartésienne de la droite (d') telle que (d') \perp (d) et $A \in$ (d').

Solution:

5) Application 2: Equation d'un cercle

a) Rappel:

Soit I un point du plan. R, un réel strictement positif, alors :

Le cercle de centre I et de rayon R est l'ensemble des points M du plan tels que :

b) Equation cartésienne d'un cercle :

On se place dans un repère orthonormé (O ; $\vec{\imath}_{\vec{J}}$) du plan.

Soit I(a; b) et R > 0

M appartient au cercle de centre I et de rayon R ⇔

On dit que l'égalité est <u>une équation cartésienne du cercle</u> Démonstration :

M appartient au cercle de centre I et de rayon R ⇔□IM = R

Or, si on pose M(x ; y) , IM = $\sqrt{(x-a)^2 + (y-b)^2}$

D'où : $\sqrt{(x-a)^2 + (y-b)^2}$ = R c'est-à-dire :

Exemples:

1) Déterminer une équation cartésienne du cercle de centre K(-3 ; 2) et de rayon $\sqrt{2}$

Solution:

2) Parfois, on donne une équation cartésienne développée d'un cercle et on demande

de retrouver ses éléments caractéristiques.

On considère l'ensemble (E) suivant :

(E) = { M(x; y) du plan tel que :
$$x^2 + y^2 - 10x + 2y - 10 = 0$$
}

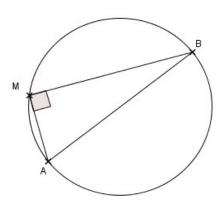
L'objectif est d'écrire l'égalité précédente sous la forme : $(x - a)^2 + (y - b)^2 = R^2$

c) Propriété caractéristique :

Rappel de collège :

Soient A et B deux points distincts.

M appartient au cercle de diamètre [AB] (avec $M \neq A$ et $M \neq B$) si et seulement si MAB est un triangle rectangle en M.



Propriété:

M appartient au cercle de diamètre [AB] ⇔

Exemple:

Soient F(2;5) et G(-1;4).

Déterminer une équation cartésienne du cercle de diamètre [FG].

Solution:

II) Norme d'un vecteur :

1) Définition de la norme d'un vecteur :

Soit \vec{u} un vecteur. Soient M et N, deux points tels que \vec{u} = \overrightarrow{MN}

<u>La norme</u> de \vec{u} est le réel positif MN.

Notation: norme de \vec{u} : $||\vec{u}||$

<u>Cas particulier</u>: $||\vec{0}|| = 0$

2) Propriétés :

- a) Dans un repère orthonormé du plan, si $\vec{u}(x; y)$ alors $||\vec{u}|| = \sqrt{x^2 + y^2}$
- b) Lien avec le carré scalaire :

$$||\vec{u}||^2 = x^2 + y^2 = \vec{u}. \vec{u} = \vec{u}^2$$

c) Inégalité triangulaire :

Soient u et v deux vecteurs :

$$||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$$

d) Soit $\lambda \in \mathbb{R}$, \vec{u} un vecteur :

$$| || \lambda \vec{u} || = |\lambda| ||\vec{u}||$$

Démonstration des propriétés :

a) Soit
$$\vec{u}(x; y)$$
: il existe un point $M(x; y)$ tel que $\vec{u} = \overrightarrow{OM}$
Par définition, $||\vec{u}|| = OM = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$

- b) Déjà démontrée
- c) Admise
- d) Soit $\vec{u}(x;y)$, alors $\lambda \vec{u}$ ($\lambda x; \lambda y$)

D'où :
$$||\lambda \vec{u}|| = \sqrt{(\lambda x)^2 + (\lambda y)^2} = \sqrt{\lambda^2 (x^2 + y^2)} = |\lambda| \sqrt{x^2 + y^2} = |\lambda| ||\vec{u}||$$

- 3) Lien produit scalaire norme :
- a) Soient u et v deux vecteurs :

$$\vec{u}$$
. \vec{v} =.....

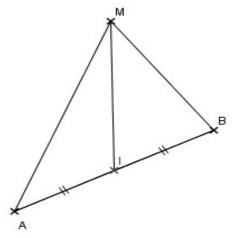
Démonstration :

$$||\vec{u} + \vec{v}||^2 = (\vec{u} + \vec{v})^2$$

$$= \vec{u}^2 + 2 \vec{u} \cdot \vec{v} + \vec{v}^2$$

$$= ||\vec{u}||^2 + 2 \vec{u} \cdot \vec{v} + ||\vec{v}||^2$$
D'où: $||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2 = 2 \vec{u} \cdot \vec{v}$
Donc: $\frac{1}{2}(||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2) = \vec{u} \cdot \vec{v}$

b) Application : théorème de la médiane



I étant le milieu de [AB], on a l'égalité suivante :

$$MA^2 + MB^2 =$$

<u>Démonstration</u>:

$$\overline{MA^2} = \overline{M}\overline{A}^2 = (\overline{M}\overline{I} + \overline{I}\overline{A})^2$$
 (relation de Chasles)
= $\overline{M}\overline{I}^2 + 2 \overline{M}\overline{I}$. $\overline{I}\overline{A} + \overline{I}\overline{A}^2$
= $M\overline{I}^2 + 2 \overline{M}\overline{I}$. $\overline{I}\overline{A} + \overline{I}A^2$

De même : $MB^2 = MI^2 + 2 \overrightarrow{MI} \cdot \overrightarrow{IB} + IB^2$

D'où:
$$MA^2 + MB^2 = 2MI^2 + 2\overline{MI} \cdot (\overline{IA} + \overline{IB}) + IA^2 + IB^2$$

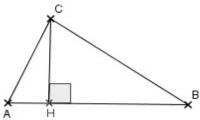
Or,
$$\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0} d'o\dot{u} : 2\overrightarrow{MI} . (\overrightarrow{IA} + \overrightarrow{IB}) = 0$$

et IA = IB =
$$\frac{AB}{2}$$
, d'où IA² + IB² = 2 $\frac{AB^2}{4}$ = $\frac{AB^2}{2}$

Par conséquent :

II) Différentes expressions du produit scalaire :

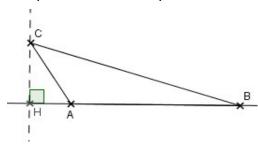
1) Avec les projetés orthogonaux :



H est le projeté orthogonal de C sur (AB) (c'est-à-dire : (CH) \perp (AB) avec H \in (AB))

$$\overrightarrow{AB}$$
. \overrightarrow{AC} =.....

Attention : quand $H \notin [AB]$, le produit scalaire pourra être négatif $(\overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ pas le})$



même sens)

$$\overrightarrow{AB}$$
. \overrightarrow{AC} =.....

2) Produit scalaire et cosinus :

Soient \vec{u} et \vec{v} deux vecteurs différents du vecteur nul, alors :

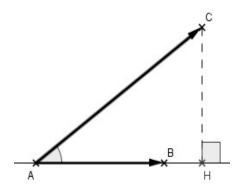
 \vec{u} . \vec{v} =.....

Démonstration :

On pose $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. Comme $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$, alors $A \neq B$ et $A \neq C$ On appelle H le projeté orthogonal de C sur (AB).

Deux cas sont à envisager :

a) Premier cas : H ∈ [AB) :

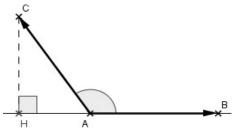


 \vec{u} . \vec{v} = \vec{AB} . \vec{AC} = AB x AH (d'après l'écriture du produit scalaire à l'aide des projetés orthogonaux)

$$\cos(\vec{u}; \vec{v}) = \cos(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{AH}{AC} \text{ D'où} : AH = AC \times \cos(\vec{u}; \vec{v})$$

Donc : \vec{u} . \vec{v} = AB x AC x $\cos(\vec{u}; \vec{v})$ = $||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v})$

b) Deuxième cas : H ∉ [AB) :



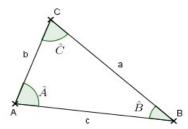
AH = AC × cos (
$$\bigcirc$$
 - $(\vec{u}; \vec{v})$) = - AC × cos($\vec{u}; \vec{v}$)
 \vec{u} . \vec{v} = - AB × AH = - AB × (- AC) × cos($\vec{u}; \vec{v}$) = $||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v})$

Exemple: ABC est un triangle isocèle en A tel que AB = a (avec a > 0) et

$$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{6} \text{alors}: \qquad \overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos \frac{\pi}{6} = a^2 \times \frac{\sqrt{3}}{2}$$

3) Applications trigonométriques :

a) Relations d'Al-Kashi:



Traditionellement, on note a = BC, b = AC , c = AB et \widehat{BAC} = \widehat{A} , \widehat{ACB} = \widehat{C} et \widehat{ABC} = \widehat{B} Nous avons trois relations :

<u>Démonstration</u>:

$$\alpha^{2} = BC^{2} = \overrightarrow{BC^{2}} = (2\overrightarrow{BA} + \overrightarrow{AC})^{2} = BA^{2} + AC^{2} + 2\overrightarrow{BA}.\overrightarrow{AC}$$

$$= c^{2} + b^{2} - 2\overrightarrow{AB}.\overrightarrow{AC}$$

$$= c^{2} + b^{2} - 2cbx\cos \hat{A}$$

Les deux autres relations se montrent de la même manière.

Exemple:

On considère un triangle ABC tel que AB = 7 cm , AC = 5,5 cm et \widehat{BAC} = 42° Calculer BC.

b) Formule des sinus :

Si on note S: l'aire du triangle ABC, alors:

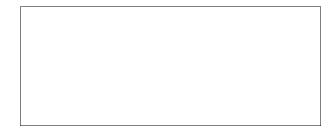
$$S = \frac{1}{2}bcxsin \hat{A} = \frac{1}{2}abxsin \hat{C} = \frac{1}{2}acxsin \hat{B}$$

On a la formule des sinus :

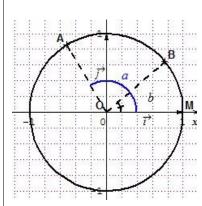
· -	

c) Formules d'addition des cosinus et sinus :

Soient a et b deux réels :



Démonstration :



Dans le repère
$$(O; \vec{i}, \vec{j})$$
, on a $\overrightarrow{OA}(\cos a; \sin a)$ et $\overrightarrow{OB}(\cos b; \sin b)$

 $\mathsf{pù}: \overrightarrow{OA}. \ \overrightarrow{OB}$ = cos acos b + sin asin b

D'autre part :

Donc:

$$cos(a - b) = cos acos b + sin asin b$$

Les autres relations se démontrent de la même manière

Exemple:

On a
$$\frac{\pi}{4}$$
+ $\frac{\pi}{3}$ = $\frac{3\pi}{12}$ + $\frac{4\pi}{12}$ = $\frac{7\pi}{12}$

On
$$\alpha \frac{\pi}{4} + \frac{\pi}{3} = \frac{3\pi}{12} + \frac{4\pi}{12} = \frac{7\pi}{12}$$

D'où : $\cos \frac{7\pi}{12} = \cos \left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \cos \frac{\pi}{4} \times \cos \frac{\pi}{3} - \sin \frac{\pi}{4} \times \sin \frac{\pi}{3}$

$$= \frac{\sqrt{2}}{2} \times \frac{1}{2} - \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{2} - \sqrt{6}}{4}$$

d) Formules de duplication :

Soit $a \in \mathbb{R}$

<u>Démonstrations</u>:

$$\cos 2a = \cos(a + a) = \cos a\cos a - \sin a\sin a$$

= $\cos^2 a - \sin^2 a$
 $\sin 2a = \sin(a + a) = \sin a\cos a + \sin a\cos a = 2\sin a\cos a$

Comme on a démontré que cos
$$2a = cos^2a - sin^2a$$
, alors :
$$\frac{1+cos2a}{2} = \frac{1+cos^2a - sin^2a}{2} = \frac{cos^2a + sin^2a + cos^2a - sin^2a}{2}$$

 $(car cos^2a + sin^2a = 1)$

$$= \cos^2 \alpha$$

On démontre de même la dernière formule.