Seconde 3 DM de mathématiques: Fonctions homographiques/Droites

Pour le
30/04/2013

Exercice 1:

On considère deux fonctions f et g dont les expressions respectives en fonction de x

sont données par : $f(x) = 4 + \frac{2}{x-3}$ et $g(x) = 1 - \frac{5}{x+2}$

- 1) Montrer que f et g sont des fonctions homographiques
- 2) Partie I : Conjectures à l'aide de la calculatrice

Dans cette partie, les résultats sont seulement conjecturés à l'aide de la calculatrice mais pas démontrés.

- a) Représenter f et g sur l'écran de la calculatrice
- b) Donner les ensembles de définition des deux fonctions.
- c) Lire les coordonnées du point d'intersection de la courbe de f avec l'axe des abscisses. Faire de même avec celle de g.
- d) Lire les coordonnées du point d'intersection de la courbe de f avec l'axe des ordonnées. Faire de même avec celle de g.
 - e) 4 a-t-il un antécédent par f? Et 1 a-t-il un antécédent par g?
 - 3) Partie II : Démonstrations des conjectures

Démontrer tous les résultats des questions b, c , d et e de la partie 2 soigneusement.

4) Dresser les tableaux de variation de f et g en procédant par étapes.

Exercice 2:

Dans un repère orthonormé du plan (O,I,J), on a : A(1;2), B(-5;1) et C(-5;3)

- 1) Faire une figure
- 2) Calculer les coordonnées des points M et N milieux respectifs des côtés [AB] et [BC]
- 3) Déterminer par le calcul les équations réduites des droites (CM) et (AN)
- 4) En déduire les coordonnées du point G, point d'intersection de (CM) et (AN)
- 5) Si on note x_A , x_B et x_C les abscisses respectives des points A, B et C et y_A , y_B et

 y_c les ordonnées respectives des points A, B et C, calculer $\frac{x_A + x_B + x_C}{3}$ et

$$\frac{y_A + y_B + y_C}{3}$$
 Que constate-t-on?

Exercice 3:

On lance une balle en caoutchouc d'une hauteur initiale de 250 cm. A chaque rebond, elle perd 10 % de sa hauteur. On voudrait savoir au bout de combien de rebonds au minimum, sa hauteur sera inférieure ou égale à 10 cm.

- 1) Montrer qu'à chaque rebond, la hauteur est multipliée par 0,9.
- 2) A l'aide d'une boucle Tant que..., écrire un algorithme permettant d'afficher la hauteur cherchée. (on utilisera deux variables : h pour la hauteur et rebonds : pour le nombre de rebonds). Remplir le tableau suivant :

	Initialisation	Après la 1 ^{ère} boucle	Après la 2 ^{ième}	Après la 3 ^{ième}
Hauteur				
Rebonds				