Seconde

Feuille de permanence n°15

Fonctions usuelles (Carré/Cube/Racine carrée/Inverse)

Année scolaire 2024/2025

Exercice 1 : Fonction carré (équations)

1) En utilisant à chaque fois un schéma de la représentation de la fonction carré, résoudre les équations suivantes :

a) $x^2 = 5$ b) $3x^2 - 1 = 0$ c) $-5x^2 + 2 = -4x^2 + 9$ d) $7x^2 - 6 + 5x = (x+3)(3x-4)$

2) Résoudre algébriquement en utilisant des factorisations les équations suivantes :

a) $x^2 - 36 = 0$

b) $9x^2 = 121$ c) $16x^2 - 5 = 0$ d) $7x^2 - 3 = -18x^2 + 61$

Exercice 2 : Fonction carré (inéquations)

1) En utilisant à chaque fois un schéma de la représentation de la fonction carré, résoudre les inéquations suivantes :

a) $x^2 \ge 3$ b) $2x^2 < 32$ c) $15x^2 - 5 \le -x^2 + 3$

2) Résoudre algébriquement en utilisant des factorisations et éventuellement des tableaux de signes les inéquations suivantes :

a) $x^2 - 1 > 0$ b) $16x^2 - 81 \le 0$ c) $21x^2 - 11 < -28x^2 + 7$

Exercice 3 : Fonction carré (Variations)

- 1) Quelles sont les variations de la fonction carré sur \mathbb{R} ?
- 2) Démontrer algébriquement la croissance de la fonction f sur $[0;+\infty[$ par $f(x)=x^2$
- 3) Même chose sur $[-\frac{1}{2}; +\infty[$ par $g(x) = x^2 + x + 2$

Exercice 4 : Fonction carré (Variations)

1) Comparer les nombres suivants SANS les calculer, mais en justifiant :

 $A = 2024^2$ et $B = 2025^2$

2) Même chose avec les nombres suivants :

 $C = (-4 + \pi)^2$ et $D = (-3 + \pi)^2$

Exercice 5 : Fonction carré (Encadrements)

Proposer l'encadrement le plus fin possible de x² dans les cas suivants en justifiant :

1) $2,3 \le x \le 3,5$ 2) $-6 \le x \le -2$ 3) $-5 \le x \le 4$

Exercice 6 : Fonction cube (détermination de racines cubiques)

<u>Notations</u>: L'unique antécédent d'un réel y par la fonction cube pourra être noté $\sqrt[3]{y}$

En utilisant à chaque fois un schéma de la représentation graphique de la fonction cube, résoudre les équations et inéquations suivantes :

1)
$$x^3 = \frac{1}{8}$$

$$2) 5x^3 + 7 = 0$$

3)
$$x^3 \ge 27$$

1)
$$x^3 = \frac{1}{8}$$
 2) $5x^3 + 7 = 0$ 3) $x^3 \ge 27$ 4) $6x^3 + 11 > 7x^3 - \frac{1}{2}$

Exercice 7: Fonction cube (Encadrements)

Proposer l'encadrement le plus fin possible de x³ dans les cas suivants en justifiant :

1)
$$x \in [2;5]$$

1)
$$x \in [2;5]$$
 2) $x \in [-4;-2]$ 3) $x \in [-5;9]$

3)
$$x \in [-5; 9]$$

Exercice 8 : Fonction racine carrée

En utilisant à chaque fois un schéma de la représentation graphique de la fonction racine carrée, résoudre les équations et inéquations suivantes :

1)
$$\sqrt{x} = 5.8$$

1)
$$\sqrt{x} = 5.8$$
 2) $3\sqrt{x} - 10 = 0$ 3) $\sqrt{x} \ge 11.5$ 4) $6\sqrt{x} + 1 < 8$

3)
$$\sqrt{x} \ge 11.5$$

4)
$$6\sqrt{x} + 1 < 8$$

Exercice 9 : Fonction racine carrée

Proposer l'encadrement le plus fin possible de \sqrt{x} dans les cas suivants en justifiant :

1)
$$0 < x \le 81$$
 2) $5 \le x \le 12$

2)
$$5 \le x \le 12$$

Exercice 10: Fonction inverse

En utilisant à chaque fois un schéma de la représentation graphique de la fonction inverse, résoudre les équations et inéquations suivantes :

1)
$$\frac{1}{x} = 7,6$$

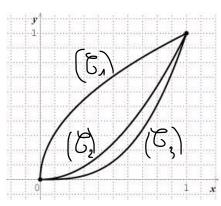
1)
$$\frac{1}{x} = 7.6$$
 2) $\frac{1}{x} \ge 3 + \frac{1}{5}$ 3) $\frac{1}{x} < -9.1$

$$(3)^{\frac{1}{v}} < -9,1$$

Exercice 11: Fonction inverse

Proposer l'encadrement le plus fin possible de $\frac{1}{x}$ dans les cas suivants en justifiant :

1)
$$0 < x \le 81$$


2)
$$5 \le x \le 12$$

2)
$$5 \le x \le 12$$
 3) $-11,4 \le x \le -10,3$

Exercice 12: Plusieurs fonctions usuelles

On a tracé sur [0,1] les courbes représentatives de la fonction carré, de la fonction cube et de la fonction racine carrée. Attribuer à chaque courbe ci-dessous sa fonction :

Courbe 1 :.....

