Seconde	Chapitre I : Calculs numériques	Année scolaire
	(Racines carrées, arithmétique et ensembles de nombres)	2023/2024

I) Racines carrées :

- 1) Théorème de Pythagore:
- a) ABC est un triangle rectangle en A tel que AB = 4 cm et AC = 3 cm. Calculer BC

b) EFG est un triangle rectangle en F tel que EG = 9.3 cm, EF = 4.6 cm. Calculer FG (Arrondir au mm près)

2) <u>Définition</u>:

<u>La racine carrée</u> d'un nombre positif x est <u>l'unique</u> nombre positif y tel que $y^2 = x$

Exemples : 6 est la racine carrée de 36 car 6 > 0 et $6^2 = 36$

Attention : $(-6)^2 = 36$ mais - 6 n'est pas la racine carrée de 36 car - 6 < 0

Notation : $\sqrt{36} = 6$

3) Propriétés:

a) Soient a et b, deux nombres positifs :

On a : $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$

b) Soient $a \ge 0$ et b > 0:

On a : $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Attention:
$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$

Exemple: $\sqrt{100} = \sqrt{64 + 36}$ or, $\sqrt{64} = 8$ et $\sqrt{36} = 6$ et 8 + 6 = 14 $\sqrt{100} = 10$ Donc: $\sqrt{64 + 36} \neq \sqrt{64} + \sqrt{36}$

4) Applications:

a) Ecrire les résultats des calculs suivants sous la forme $a\sqrt{3}$, où a est un entier :

	$A = 5\sqrt{3} + 9\sqrt{3} - 7\sqrt{3}$	$B = \sqrt{12 + \sqrt{2}}$	7 – √75	$C = 5\sqrt{3} - 8\sqrt{48} + 6\sqrt{108}$	
	b) Calculer et sim	plifier les expres	sions suivan	tes:	
$A = 3(\sqrt{5} + 2\sqrt{2})(\sqrt{5} - 2\sqrt{2})$				$B = \frac{(\sqrt{7} + 3\sqrt{2})(5\sqrt{2} - 6\sqrt{7})}{2}$	
				2	
1	I) <u>Arithmétique :</u>				
1	Définitions :		1 0		
On d	Soient a et b, deux nor lit que <u>b est un diviseur de</u>			ane a —	
On C	in que <u>o est un diviseur de</u>	e a si ii existe uii	entier k, ter	que a –	
	lit aussi que <u>a est un multi</u>	iple de b.			
	nples : a) 9 est un diviseur de 36	at 26 act up		da 0	
	Donner les diviseurs p				
	,				
-	Un entier est dit <u>pair</u> si	i			
_	Un entier est dit impai	<u>r</u> si			
2	2) <u>Propriétés</u> :				
Soit	x un entier :				
	x est un en	tier pair $\Leftrightarrow x^2$ es	t un entier p	air	

x est un entier impair \Leftrightarrow x^2 est un entier impair

Démonstration:

3)	Nombres	premiers	:
		-	_

a) <u>Définition</u>:

Soit x un entier positif. On dit que x est <u>un nombre premier</u> si.....

Exemples:

2 est le seul nombre premier pair, 3,5,7,11,etc... sont des nombres premiers.

b) Propriété: (admise)

Tout nombre entier positif est soit premier, soit se décompose en produit de facteurs premiers.

Exemple:

272

Définition de fraction irréductible :

Une fraction est dite <u>irréductible</u> si on ne peut pas la réduire davantage

Application: Rendre une fraction irréductible

Soit A =
$$\frac{16800}{17640}$$

III) Ensembles de nombres :

III) <u>Ensembles de nombres :</u>
1) Entiers naturels: Ce sont les entiers positifs. {0;1;2;3;} sont les entiers naturels.
Notation: Cet ensemble se note Exemples: 5 Mais - 45
2) Entiers relatifs: On considère tous les entiers positifs et les négatifs: {3;-2;-1;0;1;2:3:4;}
Notation: Cet ensemble se note Exemples: -32
3) Nombres décimaux : Ce sont les nombres qui s'écrivent sous la forme :
Notation:
Cet ensemble se note :
Exemples:
Remarque : Les nombres décimaux peuvent s'écrire avec une virgule et une partie décimale « qui s'arrête ».
Tout entier relatif est un décimal, en effet :
D'où:

Il existe des nombres qui ne sont pas décimaux.

Exemple : $\frac{1}{3}$ n'est pas un nombre décimal.

<u>Démonstration</u>:

5) <u>Réels</u>: L'axe réel: -3 -2 -1 1 0 1 2 3 4 5 6 7 8 9 10

Droite numérique graduée

Tout nombre réel correspond à l'abscisse d'un point sur l'axe réel.

Notation:
Tout nombre rationnel est un nombre réel.
D'où:

Remarque : Il existe d'autres ensembles de nombres plus vastes que celui des nombres réels.

Quelques cas particuliers:

 $\mathbb{N}^* = \dots \qquad \mathbb{Z}^- = \dots \qquad \mathbb{Z}^- = \dots$