Seconde

Cours : Lectures graphiques et généralités sur les fonctions

Année scolaire 2020/2021

I) Rappels de troisième sur les fonctions :

1) Définitions, exemples et notations :
a) Fonction:
On considère un ensemble D contenu dans \mathbb{R} (notation :)
On dit que f est une fonction définie sur D si pour chaque
1 0 1

Notations: f: ou

On dit que D est de la fonction f.

b) Images, antécédents :

Dans la notation y = f(x), y estdu nombre x par la fonction f et x est undu nombre y par la fonction f.

Remarques:

- Tout nombre x de D n'a qu'<u>une seule</u>par f
- Tout nombre réel y peut ne pas avoir, ou en avoir un ou bien plusieurs.

Exemple: Si on considère la fonction f définie sur \mathbb{R} par $f(x) = x^2$

 $f(5) = \dots$ c'est-à-dire l'image de 5 par la fonction f est a deux antécédents par f:

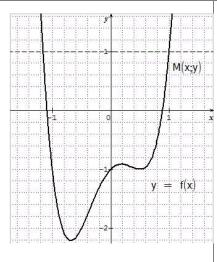
2) Représentations graphiques :

On se donne un repère du plan.

L'ensemble des points M de coordonnées (x,y) avec $x \in D$ et y = f(x) est

appelé

Exemple:



- L'axe des x est celui des
- L'axe des y est celui des
- Si on appelle (C_f) la courbe représentative de la fonction f, alors on dit que (C_f) a pour équation

3) Utilisation de la calculatrice : (Sur CASIO Graph 35+)

a) Calcul d'un tableau de valeurs :

- Dans le menu principal, choisir TABLE
- Taper ensuite la fonction f
- Grâce à la touche f5 (SET), on peut donner la valeur de X au départ, à la fin puis le pas (step)
- Ensuite, taper sur la touche f6 (TABLE)

Exemple:

Considérons la fonction f définie par $f(x) = 3x^4 - 7x^3 + 2x^2 - 9x + 1$ sur [-10;10]

b) Représentation graphique :

- Dans le menu principal, choisir GRAPH.
- Sélectionner la fonction à représenter

!! ATTENTION !! au choix de l'échelle pour la représentation sur l'écran de la calculatrice Pour cela, taper sur shift puis F3 (V-Window)

4) Utilisation de quelques logiciels : (Voir en TP) a) Sine qua non b) Geogebra c) Tableur

II) Equations et inéquations :

1) Rappel: résolution algébrique d'équations

Voir les chapitres précédents

- 2) Résolution graphique :
 - a) Equations:

_	Eo	uations	f	(\mathbf{x})	= 2	a	•
	\mathbf{L}^{q}	uanons	Τ/	(1)	, .	ı	٠

Pour résoudre graphiquement une équation du type f(x) = a où a est un nombre :

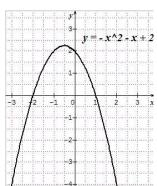
-

Exemple:

On souhaite résoudre graphiquement l'équation suivante :

$$-x^2-x+2=0$$

A l'aide du grapheur Sine Qua Non, on trace la représentation graphique de la fonction f définie par : $f(x) = -x^2 - x + 2$ sur [-3; 2] :



La droite horizontale à l'ordonnée 0 n'est autre que l'axe des abscisses.

On doit donc lire les abscisses des points d'intersection de la courbe de f avec l'axe des abscisses :

Les solutions sont donc :

Remarque:

On peut vérifier ce résultat « algébriquement ».

En effet, on calcule l'image de -2 par f : $f(-2) = -(-2)^2 - (-2) + 2$

$$= -4 + 2 + 2 = 0$$

De même, on calcule $f(1) = -1^2 - 1 + 2 = -1 - 1 + 2 = 0$

- Equations
$$f(x) = g(x)$$
:

Pour résoudre graphiquement une équation du type f(x) = g(x):
-....

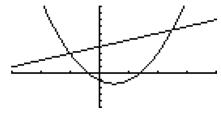
Exemple:

On souhaite résoudre graphiquement l'équation suivante :

$$2x^2 - 2x - 1 = x + 4$$

A l'aide de la calculatrice (CASIO graph 35+), on représente f et g définies respectivement par : $f(x) = 2x^2 - 2x - 1$ et g(x) = x + 4 sur l'intervalle [-3;4]

Puis, à l'aide de la fonction TRACE (shift F1), on peut lire les abscisses des points d'intersection. On trouve -1 et 2,5.



b) Inéquations :

- Inéquations $f(x) \le a$ (ou $f(x) \ge a$) où a est un réel :

Pe	วน	ır	rė	SC	ри	dr	e,	gr	ар	h	q	ие	em	ie	nt				-					•	 ٠	, ,	_									•					
-	••	• • •			•••	•••	•••	•••	•••				••	• • •		• •	 	•••	•••	 	••	•••	•••		 		•••	•••	•••	• • • •	•••	 • • •	 • •	 	 ••••	• • •	•••	•••			
-							•••	•••						• • •			 •••	•••		 		•••			 		•••		•••	•••		 	 • •	 	 · • • •			•••			
-																	 			 					 							 	 	 	 . 			•••			

Pour résoudre graphiquement une inéquation du type $f(x) > a$ où a est un nombre :

Exemple:

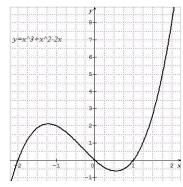
On souhaite résoudre graphiquement l'inéquation suivante :

$$x^3 + x^2 - 2x > 0$$
 sur l'intervalle [-2;2]

- On commence par tracer la courbe représentative de la fonction f définie par:

 $f(x) = x^3 + x^2 - 2x$ à l'aide d'un grapheur (Sine qua Non ,par exemple)

- On lit les abscisses des points de la courbe situés au-dessus de la courbe représentative de la fonction f
- On écrit les solutions en utilisant éventuellement une réunion :



Remarque : Si on avait demandé de résoudre l'inéquation : $x^3 + x^2 - 2x \le 0$ sur [-2;2], on aurait répondu :

S =.....

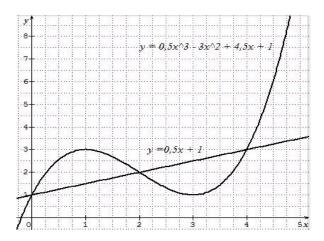
- Inéquation du type f(x) > g(x) (Position relative de deux courbes)

Pour résoudre graphiquement une inéquation du type $f(x) > g(x)$ où f et g sont deux fonctions :

Remarque: on procède de même pour résoudre une inéquation du type $f(x) \le g(x)$ Exemple:

Résoudre graphiquement l'inéquation $\frac{1}{2}x + 1 < \frac{1}{2}x^3 - 3x^2 + 4,5x + 1$ sur [0;5]

- On trace dans le même repère les courbes représentatives des fonctions f et g définies respectivement par $f(x) = \frac{1}{2}x + 1$ et $g(x) = \frac{1}{2}x^3 - 3x^2 + 4.5x + 1$ à l'aide d'un grapheur (Sine Qua Non, par exemple):



Les solutions sont les abscisses des points de la courbe représentative de f qui sont situés en-dessous de celle de g.

Donc **S** =

Remarque: Sur [2;4], on a $f(x) \ge g(x)$ C'est-à-dire: $\frac{1}{2}x + 1 \ge \frac{1}{2}x^3 - 3x^2 + 4.5x + 1$

IV) Variations des fonctions :

1) Définitions:

On considère une fonction définie sur un ensemble D.

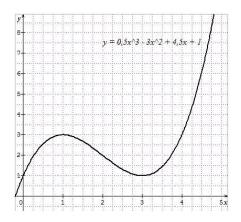
I est un intervalle contenu dans D (notation : $I \subset D$)

- a) On dit que f est strictement croissante sur I si et seulement si pour tous u et v de I tels que u < valors f(u) < f(v)
- b) On dit que f est <u>strictement décroissante</u> sur I si et seulement si pour tous u et v de I tels que u < $v \ alors \ f(u) > f(v)$

Remarque:

Si les inégalités précédentes sont larges, on dit que f est croissante au lieu de strictement croissante et décroissante au lieu de strictement décroissante.

Exemple:



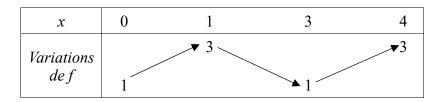
On va reprendre la fonction g utilisée dans l'exemple précédent :

g définie sur [0;5] par $g(x) = \frac{1}{2}x^3 - 3x^2 + 4.5x + 1$

- Sur [0;1], g est strictement croissante
- Sur [1;3], g est strictement décroissante
- Sur [3;5], g est strictement croissante.

2) Tableau de variation. Extremum:

a) En reprenant l'exemple précédent sur [0;4], on peut résumer les variations en utilisant un tableau avec les valeurs qui interviennent et des flèches pour symboliser la croissance ou la décroissance.



b) Extremum:

En regardant le tableau précédent, on voit que 3 est la plus grande valeur que prend f sur l'intervalle [0;4] et 1 la plus petite.

On dit que 3 est <u>le maximum</u> de f sur l'intervalle [0;4] et que 1 est <u>le minimum</u> de f sur l'intervalle [0;4].

Définition:

On considère une fonction f définie sur un ensemble E, I étant un intervalle contenu dans E ($I \subset E$) et a $\in I$:

- On dit que f(a) est <u>le minimum</u> de f sur I, si et seulement si pour tout $x \in I$, $f(x) \ge f(a)$
- On dit que f(a) est <u>le maximum</u> de f sur I, si et seulement si pour tout $x \in I$, $f(x) \le f(a)$

On appelle **extremum** un minimum ou un maximum.