Feuille de permanence n°5:

Limites/Asymptotes/Théorèmes

Décembre 2020

Exercice 1:

Voici le tableau de variations d'une fonction f sur $\mathbb{R}\setminus\{-1,5\}$

X	-∞ -	-1	5 +∞
Variations de f	5	+ &	2

- 1) Déterminer les limites aux bornes de l'ensemble de définition de f
- 2) Interpréter graphiquement les limites obtenues
- 3) Proposer une courbe possible pour f (schéma)

Exercice 2:

Soit
$$f(x) = \frac{7x+1}{x+2}$$

1) Calculer
$$\lim_{\substack{x \to -2 \\ x < -2}} f(x)$$
 et $\lim_{\substack{x \to -2 \\ x > -2}} f(x)$

- 2) f admet-elle une limite en 2 ? Justifier.
- 3) Interpréter graphiquement.

Exercice 3:

Soit
$$f(x) = \frac{4x-7}{3x^2-5x+2}$$

- 1) Déterminer l'ensemble de définition de f le plus grand possible en justifiant.
- 2) On décide de se placer sur $[0;+\infty[\setminus\{1\}:$

Déterminer les limites de f aux bornes de ce nouvel ensemble.

Exercice 4:

Soit
$$g(x) = \frac{2x+3}{4x-1}$$

- 1) Déterminer D_g, l'ensemble de définition de g le plus grand possible
- 2) Déterminer les limites de g aux bornes de Dg
- 3) Calculer g' (la dérivée de g)
- 4) Dresser le tableau de variations de g sur D_g
- 5) Déterminer les éventuelles asymptotes à la courbe de g.
- 6) Proposer une courbe possible pour g

Exercice 5:

- 1) Calculer $\lim_{x\to +\infty} \frac{\sin(x)}{x^2+1}$ en justifiant soigneusement
- 2) Calculer $\lim_{x \to -\infty} e^{x} \cos(x)$ en justifiant soigneusement
- 3) Calculer $\lim_{\substack{x \to -\infty \\ x > 0}} \frac{1}{x} + \sin(\frac{1}{x})$ en justifiant soigneusement